Artificial intelligence and stroke imaging.

Curr Opin Neurol

High Dimensional Neurology Group, UCL Queen Square Institute of Neurology, University College London, Russell Square House, Bloomsbury, London, UK.

Published: February 2025

AI Article Synopsis

  • The review highlights the complexity of stroke, driven by disruptions in blood supply and complicated by the neural and vascular systems' interactions.
  • Advances in machine vision and deep learning are improving predictive tools for stroke, but their clinical impact is limited by real-world data challenges.
  • Although AI's potential benefits for stroke care are clear, the best approaches for practical application are still being explored, with deep generative models seen as a promising avenue for innovation.

Article Abstract

Purpose Of Review: Though simple in its fundamental mechanism - a critical disruption of local blood supply - stroke is complicated by the intricate nature of the neural substrate, the neurovascular architecture, and their complex interactions in generating its clinical manifestations. This complexity is adequately described by high-resolution imaging with sensitivity not only to parenchymal macrostructure but also microstructure and functional tissue properties, in conjunction with detailed characterization of vascular topology and dynamics. Such descriptive richness mandates models of commensurate complexity only artificial intelligence could plausibly deliver, if we are to achieve the goal of individually precise, personalized care.

Recent Findings: Advances in machine vision technology, especially deep learning, are delivering higher fidelity predictive, descriptive, and inferential tools, incorporating increasingly rich imaging information within ever more flexible models. Impact at the clinical front line remains modest, however, owing to the challenges of delivering models robust to the noisy, incomplete, biased, and comparatively small-scale data characteristic of real-world practice.

Summary: The potential benefit of introducing AI to stroke, in imaging and elsewhere, is now unquestionable, but the optimal approach - and the path to real-world application - remain unsettled. Deep generative models offer a compelling solution to current obstacles and are predicted powerfully to catalyse innovation in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WCO.0000000000001333DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
stroke imaging
8
intelligence stroke
4
imaging
4
imaging purpose
4
purpose review
4
review simple
4
simple fundamental
4
fundamental mechanism
4
mechanism critical
4

Similar Publications

The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.

View Article and Find Full Text PDF

Soft capacitive sensors are widely utilized in wearable devices, flexible electronics, and soft robotics due to their high sensitivity. However, they may suffer delamination and/or debonding due to their low interfacial toughness. In addition, they usually exhibit a small measurement range resulting from their limited stiffness variation range.

View Article and Find Full Text PDF

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!