AI Article Synopsis

  • Recent developments in wound dressings focus on natural bioactives like guar gum (GG) and gallic acid (GA), which can enhance healing compared to traditional materials.
  • The study created a GA-GG conjugate through a polymerization process, confirming its successful integration and beneficial structural changes via various spectroscopic analyses.
  • A polyelectrolyte complex (PEC) film made with chitosan showed strong antioxidant and antimicrobial properties, high swelling rates, and excellent wound healing efficacy, achieving 94.5% closure in comparison to untreated controls.

Article Abstract

Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate. NMR and FTIR confirmed GA integration, UV spectroscopy indicated changes in electronic transition, DSC analysis suggested a reduction in crystallinity, and XRD revealed structural modifications. SEM revealed a porous structure that reflected its polymerized nature. Due to inadequate mechanical strength and film-forming ability of the synthesized GA-GG conjugate, polyelectrolyte complexation method using chitosan was explored to form a polyelectrolyte complex (PEC) film. The film exhibited a high swelling rate, excellent antioxidant properties, and was both hemocompatible and exhibited improved antimicrobial properties. , , and characterizations were performed to compare the performance of these biocomposite films to those of their counterparts. It promoted angiogenesis in the chick yolk sac membrane and demonstrated good cytocompatibility in cell proliferation studies on the viability of the L929 mouse fibroblast cell line. wound healing efficacy of the PEC film in wound closure was 94.5% as compared to the untreated disease control group ( < 0.001). This work highlights the development of an innovative GA-GG conjugate/chitosan PEC-based film with significant potential for wound healing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2024.2439668DOI Listing

Publication Analysis

Top Keywords

polyelectrolyte complex
8
film exhibited
8
wound healing
8
antioxidant properties
8
ga-gg conjugate
8
pec film
8
wound
6
gallic acid-guar
4
acid-guar gum
4
gum chitosan-based
4

Similar Publications

Effect of Hyaluronan Molecular Weight on the Stability and Biofunctionality of Microfibers Assembled by Interfacial Polyelectrolyte Complexation.

ACS Appl Mater Interfaces

January 2025

3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.

Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.

View Article and Find Full Text PDF
Article Synopsis
  • Recent developments in wound dressings focus on natural bioactives like guar gum (GG) and gallic acid (GA), which can enhance healing compared to traditional materials.
  • The study created a GA-GG conjugate through a polymerization process, confirming its successful integration and beneficial structural changes via various spectroscopic analyses.
  • A polyelectrolyte complex (PEC) film made with chitosan showed strong antioxidant and antimicrobial properties, high swelling rates, and excellent wound healing efficacy, achieving 94.5% closure in comparison to untreated controls.
View Article and Find Full Text PDF

Thermal aggregation of immunoglobulin G depending on the charge state of protein-polyelectrolyte complexes.

Int J Biol Macromol

January 2025

Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan. Electronic address:

Protein-polyelectrolyte complexes (PPCs) exhibit opposite effects, both suppressing and promoting protein aggregation, depending on the type of components. For the application of PPCs as protein stabilization technology, these opposite effects must be controlled. In this study, we investigated the thermal aggregation of immunoglobulin G (IgG)-polyamino acid complexes to elucidate the relationship between the charge state of PPCs, evaluated by the zeta potential, and their opposite effects on the aggregation process, which were measured using a spectrophotometer.

View Article and Find Full Text PDF

Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.

View Article and Find Full Text PDF

This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!