AI Article Synopsis

  • Hepatocellular carcinoma (HCC) is a major global health issue often diagnosed late, making early detection critical yet difficult.
  • This study utilizes deep learning with the You Only Look Once (YOLO) architecture to improve HCC detection in CT images, using a dataset of 1290 images from 122 patients.
  • The YOLO model achieved impressive diagnostic results, with a precision of 0.97216, recall of 0.919, and overall accuracy of 95.35%, indicating its potential to enhance early diagnosis and patient outcomes in clinical settings.

Article Abstract

Hepatocellular carcinoma (HCC) is a prevalent cancer that significantly contributes to mortality globally, primarily due to its late diagnosis. Early detection is crucial yet challenging. This study leverages the potential of deep learning (DL) technologies, employing the You Only Look Once (YOLO) architecture, to enhance the detection of HCC in computed tomography (CT) images, aiming to improve early diagnosis and thereby patient outcomes. We used a dataset of 1290 CT images from 122 patients, segmented according to a standard 70:20:10 split for training, validation, and testing phases. The YOLO-based DL model was trained on these images, with subsequent phases for validation and testing to assess the model's diagnostic capabilities comprehensively. The model exhibited exceptional diagnostic accuracy, with a precision of 0.97216, recall of 0.919, and an overall accuracy of 95.35%, significantly surpassing traditional diagnostic approaches. It achieved a specificity of 95.83% and a sensitivity of 94.74%, evidencing its effectiveness in clinical settings and its potential to reduce the rate of missed diagnoses and unnecessary interventions. The implementation of the YOLO architecture for detecting HCC in CT scans has shown substantial promise, indicating that DL models could soon become a standard tool in oncological diagnostics. As artificial intelligence technology continues to evolve, its integration into healthcare systems is expected to advance the accuracy and efficiency of diagnostics in oncology, enhancing early detection and treatment strategies and potentially improving patient survival rates.

Download full-text PDF

Source
http://dx.doi.org/10.5152/tjg.2024.24538DOI Listing

Publication Analysis

Top Keywords

deep learning
8
hepatocellular carcinoma
8
computed tomography
8
early detection
8
yolo architecture
8
validation testing
8
diagnostic
4
diagnostic performance
4
performance deep
4
learning applications
4

Similar Publications

Rapidly detecting hydrogen leaks is critical for the safe large-scale implementation of hydrogen technologies. However, to date, no technically viable sensor solution exists that meets the corresponding response time targets under technically relevant conditions. Here, we demonstrate how a tailored long short-term transformer ensemble model for accelerated sensing (LEMAS) speeds up the response of an optical plasmonic hydrogen sensor by up to a factor of 40 and eliminates its intrinsic pressure dependence in an environment emulating the inert gas encapsulation of large-scale hydrogen installations by accurately predicting its response value to a hydrogen concentration change before it is physically reached by the sensor hardware.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!