A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Magnetic phase transition and magnetocaloric effect in hexagonal MnCoGe alloys mediated by axial strain: a Monte Carlo study. | LitMetric

AI Article Synopsis

  • The study investigates how axial strain affects the magnetic properties of hexagonal MnCoGe alloys, focusing on the transition from ferromagnetic to antiferromagnetic states.
  • It combines first-principles calculations and Monte Carlo simulations to show that compressive strains stabilize ferromagnetism, while tensile strains lead to antiferromagnetism, with the transition temperature rising as compressive strain increases.
  • The research identifies key magnetic exchange couplings and demonstrates that applying strain enhances magnetic stability and improves control over the magnetocaloric effect, with notable changes in magnetic entropy under a magnetic field.

Article Abstract

We report numerical studies of the magnetic phase transition and magnetocaloric effect in hexagonal MnCoGe alloys, controlled by axial strain applied along the -axis direction around room temperature. These studies are based on a combination of first-principles calculations and Monte Carlo simulations. Under compressive strains, the ferromagnetic state is stable, whereas under tensile strains, the ground state transforms into an antiferromagnetic state. The magnetic exchange couplings between elements are quantified using an SPR-KKR code, revealing that the exchange coupling between the first to fourth nearest-neighbor Mn-Mn pairs primarily determines the magnetic phase transition behaviors. By varying the compressive strains from 0% to -7.8%, the magnetic phase transition temperature increases monotonically from 284 K to 319 K. Additionally, the maximum magnetic entropy change under a magnetic field change of Δ = 1 T decreases to one-third of its value without applied strains and occurs at higher temperatures. The second-order magnetic phase transition properties influenced by strains are also discussed. Our findings indicate that the strain not only enhances the magnetic stability of alloys but also improves the linear control of the magnetocaloric effect by magnetic field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03952aDOI Listing

Publication Analysis

Top Keywords

magnetic phase
20
phase transition
20
magnetic
10
transition magnetocaloric
8
magnetocaloric hexagonal
8
hexagonal mncoge
8
mncoge alloys
8
axial strain
8
monte carlo
8
compressive strains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!