AI Article Synopsis

  • A cationic N-heterocyclic phosphenium iron tetracarbonyl complex was synthesized and its reactivity with various anionic reactants was investigated, resulting in different products depending on the anion involved.
  • Reactions with fluoride and chloride produced neutral diazaphospholenes, while bromide and iodide led to NHP iron halides through metal addition and decarbonylation.
  • At room temperature, the cationic complex primarily reduced to form a detectable Fe-centered radical, whereas at -78 °C, CH-metalation was favored, further evidenced by the characterization of a neutral borane-adduct.
  • The complex’s reactivity variations are attributed to its higher electrophilicity compared to neutral complexes

Article Abstract

A cationic N-heterocyclic phosphenium (NHP) iron tetracarbonyl complex was synthesised from the free cation and its behaviour towards various anionic reactants studied. Reactions with fluoride, chloride, and hydride sources proceeded under attachment of the anion at phosphorus to yield Fe(CO)-complexes of neutral diazaphospholenes, while bromide and iodide reacted under addition of the anion at the metal and decarbonylation to yield NHP iron halides. Reactions with amides and organometallics were unselective. At room temperature, predominantly reduction of the cationic complex to yield a spectroscopically detectable Fe-centred radical and its deactivation products was observable. At -78 °C, CH-metalation at the heterocycle was preferred, as evidenced by the structural characterisation of a neutral borane-adduct of the metalation product of a modified NHP complex. The dimer of the Fe-centred radical formed also in reactions of chloro- and bromo-diazaphospholenes with Fe(CO), which proceed not only by complexation of the P-donors as expected, but involve also oxidative addition steps and single electron transfer processes in which excess iron complex acts as the reductant. The title complex and the products isolated in the reaction studies were characterised by spectroscopic data and in many cases by XRD studies. Computational studies were employed to analyse the differing reactivity of the cationic NHP complex towards light and heavy halide ions, and to help in the assignment of the radical intermediate observed. The more diverse reactivity of the cationic NHP complexes compared to their neutral analogues is attributed to their higher electrophilicity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt03352cDOI Listing

Publication Analysis

Top Keywords

reactivity cationic
12
diverse reactivity
8
cationic n-heterocyclic
8
n-heterocyclic phosphenium
8
reduction cationic
8
nhp iron
8
fe-centred radical
8
nhp complex
8
cationic nhp
8
complex
7

Similar Publications

L-Arginine-Modified Selenium Nanozymes Targeting M1 Macrophages for Oral Treatment of Ulcerative Colitis.

Small

January 2025

Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China.

Ulcerative colitis (UC) involves persistent inflammation in the colon and rectum, with excessive reactive oxygen species (ROS) accumulation. This ROS buildup damages colonic epithelial cells and disrupts intestinal flora, worsening disease progression. Current antioxidant therapies are limited due to their instability in the gut and lack of targeting, hindering precise intervention at the lesion site.

View Article and Find Full Text PDF

Herein, we report the isolation of pyridine moiety-functionalized SiNSi pincer-based bis-silylene ligand () and its reactivity toward various halide precursors (X = Br and I) of group 13 elements (M = Al, Ga, and In). This gave us straightforward access to the SiNSi pincer-coordinated group 13 cations (-). These complexes are duly characterized by single-crystal X-ray diffraction studies, multinuclear magnetic resonance spectroscopy (H, C, and Si), and high-resolution mass spectrometry techniques.

View Article and Find Full Text PDF
Article Synopsis
  • A cationic N-heterocyclic phosphenium iron tetracarbonyl complex was synthesized and its reactivity with various anionic reactants was investigated, resulting in different products depending on the anion involved.
  • Reactions with fluoride and chloride produced neutral diazaphospholenes, while bromide and iodide led to NHP iron halides through metal addition and decarbonylation.
  • At room temperature, the cationic complex primarily reduced to form a detectable Fe-centered radical, whereas at -78 °C, CH-metalation was favored, further evidenced by the characterization of a neutral borane-adduct.
  • The complex’s reactivity variations are attributed to its higher electrophilicity compared to neutral complexes
View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

We report the application of organoiridium complexes as catalytic agents for the detoxification of biogenic reactive aldehyde species (RASP), which are implicated in the pathogenesis of neurodegenerative disorders. We show that Ir complexes functionalized with phosphonium cations localize selectively in the mitochondria and have better cellular retention compared to that of their parent Ir species. In a cell model for Parkinsonism, the mitochondria-targeted iridium catalysts exhibited superior cell protecting abilities and longer-lasting effects (up to 6 d) than conventional RASP scavengers, which failed to be effective beyond 24 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!