Mercury ions (Hg) have been found to disrupt the body's antioxidant defense mechanisms, leading to oxidative stress and physiological dysfunction. Early diagnosis and real-time monitoring of Hg fluctuations in organ damage are crucial but limited due to the lack of noninvasive and deep tissue imaging probes. Herein, a Hg-triggered targeted and NIR-II fluorescence/photoacoustic (PA) dual-mode molecular probe (NHG-2) was developed for real-time monitoring Hg fluctuations in Hg-induced acute liver and kidney injury mice. NHG-2 was designed through rational adjustment of the conjugated ring structure and further screening processes, enabling it to sensitively recognize Hg and subsequently open mitochondrial targeting, producing NIR-II fluorescence/PA signals. This probe allowed for noninvasive NIR-II fluorescence/PA imaging for real-time monitoring of Hg-induced acute liver and kidney injury, demonstrating excellent detection sensitivity. Furthermore, NHG-2 can be utilized to evaluate the efficacy of -acetylcysteine (NAC) in Hg-induced liver and kidney injury through dual signal indication. Mechanism studies suggested that NAC activated the antioxidant Akt/Nrf2 signaling pathway, reversed the changes of related biomarkers, and restored mitochondrial membrane potential. Thus, this study not only presents the first specific NIR-II fluorescence/PA dual-mode probe for Hg but also provides a potential tool for early diagnosis and treatment evaluation and potential pathogenesis study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c06622 | DOI Listing |
Infect Ecol Epidemiol
December 2024
Macha Research Trust, Choma, Zambia.
Background: Infectious disease agents pose significant threats to humans, wildlife, and livestock, with rodents carrying a third of these agents, many linked to human diseases. However, the range of pathogens in rodents and the hotspots for disease remain poorly understood.
Aim: This study evaluated the prevalence of viral, bacterial, and parasitic pathogens in rodents in riverine and non-riverine areas in selected districts in Zambia.
Glucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.
View Article and Find Full Text PDFBackground: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Immunology and Rheumatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, People's Republic of China.
Purpose: Sepsis-associated liver injury (SALI) leads to increased mortality in sepsis patients, yet no specialized tools exist for early risk assessment. This study aimed to develop and validate a risk prediction model for early identification of SALI before patients meet full diagnostic criteria.
Patients And Methods: This retrospective study analyzed 415 sepsis patients admitted to ICU from January 2019 to January 2022.
RSC Adv
January 2025
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!