All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues. Nevertheless, we lack a clear understanding of how stack pressure and operating temperature affect void evolution via the creep effect, as well as a theoretical basis for how to regulate pressure and temperature to achieve void healing and interface stability. Therefore, we develop a coupled electrochemical-diffusion-mechanical (creep)-phase field for void evolution (EDMP-VE) model, describing lithium stripping and deposition, bulk and surface diffusion, creep deformation, lattice distortion, and vacancy nucleation and annihilation. The model successfully captures void evolution at the interface during a stripping-plating cycle. We use normalized geometric parameters to quantitatively characterize the dynamic void evolution and describe the creep effect by the temporal and spatial evolution of hydrostatic stress, von Mises stress, and equivalent creep strain. It reveals the influence mechanism of stack pressure and operating temperature-driven lithium metal creep on void evolution. High stack pressure and operating temperature activate considerable creep deformation, suppress void expansion, accelerate void filling, achieve void annihilation, and improve interface contact. Considering the coupling effect of stack pressure and operating temperature, we construct a phase diagram of stack pressure-operating temperature-void healing rate, identify the void healing region, transition region, and void deterioration region, and determine the parameter window for achieving void healing. This work provides a theoretical foundation for understanding the impact mechanism of the creep effect on void evolution and supplies technical support for regulating stack pressure and operating temperature to implement void healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c13564 | DOI Listing |
J Tradit Complement Med
January 2025
Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
The medicinal value of herbal products is often rooted in their "traditional" use, recontextualized by modern biomedical research granting them certain medical uses. L. (Asteraceae), native to Mexico, exemplifies such historical developments of a species that played a key role in developing a major pharmacologically active compound - lutein.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Fisheries, Southwest University, Chongqing 402460, China.
Schizothoracine fishes in saltwater lakes of the Tibetan Plateau are important models for studying the evolution and uplift of the Tibetan Plateau. Examining their adaptation to the high-salt environment is interesting. In this study, we first assembled the RNA-Seq data of each tissue of , , and from Qinghai Lake, Selincuo Lake, and Namtso Lake, respectively, obtained by the group previously.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
Adv Mater
December 2024
Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China.
Alloy-type materials are desirable for high-energy sodium-ion batteries. Different from nanoengineering with pre-reserving void space and confined carbon coatings, microsized particles promise high specific/volumetric capacities, easy manufacturing, and low cost but are prone to rapid capacity loss. Herein, inspired by the process of "root growth in soil", microsized Bi particles (µm-Bi, as "seeds") surrounded by microsized hard carbon particles (µm-HC, as "soil") are ingeniously dispersed through a simple mixing approach.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!