Exploring the impact of sodium acetate on lipid and carotenoid production in .

Prep Biochem Biotechnol

Environmental Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India.

Published: January 2025

The study employed batch shake flasks to evaluate the impact of various nitrogen sources, phosphate levels, and sodium acetate (Na-acetate) on the growth and metabolite production. Adding Na-acetate to the medium resulted in significant improvements in critical metabolites. In shake flask experiments, this led to a cell dry weight (CDW) of 1.65 ± 0.94 g L, with lipids comprising 66.53% of the biomass. While β-carotene and carotenoid were 5.84 ± 0.05 and 37.66 ± 2.13 µg g, respectively. Subsequent experiments in a batch reactor with Na-acetate supplementation further improved these metrics. CDW increased to 5.02 ± 0.83 g L, and lipid content to 65.73 ± 0.81%. Carotenoid production rose to 40.33 ± 1.84 µg g, with β-carotene reaching 17.63 ± 0.32 µg g. The most promising results were obtained using a fed-batch bioreactor strategy with Na-acetate. achieved the highest yields across all parameters: 48.36 ± 1.14 µg g of total carotenoids, 21.38 ± 1.14 µg g of β-carotene, and a lipid content of 68.58 ± 1.95%.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2024.2441918DOI Listing

Publication Analysis

Top Keywords

sodium acetate
8
carotenoid production
8
lipid content
8
exploring impact
4
impact sodium
4
acetate lipid
4
lipid carotenoid
4
production study
4
study employed
4
employed batch
4

Similar Publications

Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.

View Article and Find Full Text PDF

Exploring the impact of sodium acetate on lipid and carotenoid production in .

Prep Biochem Biotechnol

January 2025

Environmental Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India.

The study employed batch shake flasks to evaluate the impact of various nitrogen sources, phosphate levels, and sodium acetate (Na-acetate) on the growth and metabolite production. Adding Na-acetate to the medium resulted in significant improvements in critical metabolites. In shake flask experiments, this led to a cell dry weight (CDW) of 1.

View Article and Find Full Text PDF

The current research focused on extraction optimization of bioactive compounds from Strychnos potatorum seeds (SPs) using an eco-friendly glycerol-sodium acetate based deep eutectic solvent (DES). The optimization was accomplished using response surface methodology (RSM) and artificial neural networking (ANN). The independent variables included shaking time (A), temperature (B), and solvent-to-feed ratio (C), and the responses were the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and antidiabetic activity (α-amylase inhibitory activity).

View Article and Find Full Text PDF

Fabrication of emulsion microparticles to improve the physicochemical stability of vitamin A acetate.

Food Chem

December 2024

Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China. Electronic address:

Vitamin A is an essential micronutrient crucial for human health, but it is susceptible to degradation when exposed to light, oxygen, and heat, reducing its effectiveness in food production. This study aims to develop vitamin A acetate (VA) emulsion microparticles under an acidic condition using electrostatic complexation and the viscosifying effect to enhance VA physicochemical stability. The stability, encapsulation efficiency (EE), microstructure, and rheological properties of VA emulsion microparticles at different sodium alginate concentrations were investigated.

View Article and Find Full Text PDF

Flecainide acetate is a Class 1c anti-arrhythmic with a potent sodium voltage gated channel blockade which is utilized for the second-line treatment of tachyarrhythmias in children and adults. Given its narrow therapeutic index, the individualization of drug therapy is of utmost importance for clinicians. Despite efforts to improve anti-arrhythmic drug therapy, there remain knowledge gaps regarding the impact of variation in the genes relevant to flecainide's disposition and response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!