Extended Live Imaging of Female Drosophila melanogaster Germline Stem Cell Niches.

J Vis Exp

Departamento de Genética, Facultad de Biología, Universidad de Sevilla;

Published: December 2024

AI Article Synopsis

  • Live imaging techniques provide real-time analysis of dynamic cellular processes in organisms, specifically studying the Drosophila ovary for various developmental phenomena like cell division and differentiation.
  • A new extended ex vivo culture method has been developed for live imaging of female Drosophila germline stem cell (GSC) niches, allowing visualization of GSC asymmetric division and changes in spectrosome morphology.
  • A detailed protocol is presented for this ex vivo culture, making it easier to study GSCs with various fluorescent tags commonly used in Drosophila research.

Article Abstract

Live imaging methods allow the analysis of dynamic cellular processes in detail and in real-time. The Drosophila ovary represents an excellent model to explore the dynamics of a myriad of developmental processes, such as cell division, stemness, differentiation, migration, apoptosis, autophagy, cellular adhesion, etc., over time. Recently, we have implemented an extended ex vivo culture and live imaging of the female Drosophila GSC niche. Using a Drosophila line harboring a GFP::Par-1 transgene as an example, this method allows the visualization of the GSCs' asymmetric division within their niche and the description of the changes in the spectrosome morphology along the cell cycle. Here, we present a detailed protocol for the ex vivo culture of Drosophila germaria, enabling prolonged visualization of the female GSC niche. Importantly, this protocol is broadly applicable to live imaging GSCs with multiple fluorescently tagged proteins of interest that are available in stock centers and/or in the Drosophila research community.

Download full-text PDF

Source
http://dx.doi.org/10.3791/67389DOI Listing

Publication Analysis

Top Keywords

live imaging
16
imaging female
8
female drosophila
8
vivo culture
8
gsc niche
8
drosophila
6
extended live
4
imaging
4
drosophila melanogaster
4
melanogaster germline
4

Similar Publications

Heterotopic pregnancy is defined as the concurrent presence of both an intrauterine pregnancy and an extrauterine (typically ectopic) pregnancy. This report presents the case of a 36-year-old female patient who presented to the emergency department with lower abdominal pain. A comprehensive evaluation, including transabdominal and transvaginal ultrasound imaging, revealed a heterotopic pregnancy at an estimated gestational age of six weeks and two days.

View Article and Find Full Text PDF

1The brains of Parkinson's disease (PD) patients are characterized by the presence of Lewy body inclusions enriched with fibrillar forms of the presynaptic protein alpha-synuclein (aSyn). Despite related evidence that Lewy pathology spreads across different brain regions as the disease progresses, the underlying mechanism hence the fundamental cause of PD progression is unknown. The propagation of aSyn pathology is thought to potentially occur through the release of aSyn aggregates from diseased neurons, their uptake by neighboring healthy neurons via endocytosis, and subsequent seeding of native aSyn aggregation in the cytosol.

View Article and Find Full Text PDF

The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.

View Article and Find Full Text PDF

During type 1 diabetes (T1D) progression, beta cells become dysfunctional and exhibit reduced first-phase insulin release. While this period of beta cell dysfunction is well established, its cause and underlying mechanism remain unknown. To address this knowledge gap, live human pancreas tissue slices were prepared from autoantibody- negative organ donors without diabetes (ND), donors positive for one or more islet autoantibodies (AAb+), and donors with T1D within 0-4 years of diagnosis (T1D+).

View Article and Find Full Text PDF

Unlabelled: Endocytic recycling of transmembrane proteins is essential to cell signaling, ligand uptake, protein traffic and degradation. The intracellular domains of many transmembrane proteins are ubiquitylated, which promotes their internalization by clathrin-mediated endocytosis. How might this enhanced internalization impact endocytic uptake of transmembrane proteins that lack ubiquitylation? Recent work demonstrates that diverse transmembrane proteins compete for space within highly crowded endocytic structures, suggesting that enhanced internalization of one group of transmembrane proteins may come at the expense of other groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!