Under current minimally invasive treatment regimes, minor tooth preparation and thinner biomimetic ceramic restoration are used to preserve the restored tooth's vitality, aesthetics, and function. New computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic-like material are now available. To guarantee longevity, a dental clinician must know these newly launched product's mechanical strength compared to the relatively brittle glass-matrix ceramic. Furthermore, a tooth substitute has been promoted for laboratory investigation, especially after the pandemic, and more evidentiary support is required for its application. This study developed a laboratory protocol for a monotonic load-to-fracture test to determine the fracture strength of 1 mm-thick CAD/CAM occlusal veneers. Master dies were milled from high-pressure fiberglass laminate, which has similar elastic modulus and bond strength as hydrated dentin. They were mounted into polyvinyl chloride (PVC) end caps with cold-curing epoxy resin. Occlusal veneers, also called tabletop restorations, were milled from lithium disilicate (LD) and resin nanoceramic blocks (RNC) and cemented to prepared master dies using dual-cured adhesive resin cement. They were allowed to cure fully by storing in distilled water for 48 h at 37 °C. All samples were then placed in a universal testing machine and loaded via a non-fixed 5.5 mm stainless-steel ball that allows lateral movement as would occur against the antagonist teeth. Compression was applied at a 1 mm/min rate, and the load-displacement graph was generated. The average maximum load-bearing capacity of restorations in the RNC group (3,212.80 ± 558.67 N) was significantly higher than in the LD group (2727.10 ± 472.41 N) (p < 0.05). No debonding was found during the test. Both CAD/CAM materials may have a similar flaw distribution. Hertzian cone crack was found at the loading site, whereas radial cracks propagating from the cementation surface were found close to the margin in both groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67511 | DOI Listing |
J Esthet Restor Dent
January 2025
Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany.
Objective: Investigation of the mechanical properties of occlusal veneers made from zirconia with varying translucency, bonded to different tooth substrates.
Materials And Methods: Sixty-four extracted molars were divided into two groups: preparation within enamel (E) or extending into dentin (D). Veneers were milled from four zirconia ceramics (n = 8): 5Y-TZP (HT), a multilayer of 5 and 3Y-TZP (GT), 3Y-TZP (LT), and 4Y-TZP (MT).
J Vis Exp
December 2024
School of Engineering and Materials Science, Queen Mary University of London.
BMC Oral Health
December 2024
Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
Background: Lithium disilicate occlusal veneers are popular for minimally invasive posterior teeth restoration. The aim of this study was to compare the fatigue resistance and crack pattern of lithium disilicate occlusal veneers fabricated using pressing and milling techniques with varying thicknesses.
Methods: Sixty lithium disilicate discs, representing occlusal veneers, were divided into four groups (n = 15) based on processing technique (IPS e.
J Esthet Restor Dent
December 2024
Department of Prosthodontics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
Objective: To investigate the nature and availability of evidence on the clinical performance of posterior partial coverage restorations (PCR) fabricated from different ceramic materials, outcome definitions, measurement methods, study drop-outs and follow ups.
Overview: A systematic literature search (inception-February 2024) was performed through MEDLINE, Scopus, CENTRAL, ClinicalTrials.gov, and the International Clinical Trials Registry Platform to identify clinical studies with a focus on posterior PCRs (onlays, occlusal veneers and partial crowns) with a minimum follow-up of 1 year.
Dent Mater
December 2024
Department of Biomaterials Science and Turku Clinical Biomaterials Center (TCBC), Institute of Dentistry, University of Turku, Turku, Finland; City of Turku Welfare Division, Oral Health Care, Turku, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!