The use of laboratory mice with a natural microbiome, such as "Wildling mice", offers a promising research tool for both basic and applied science due to their close resemblance to the human superorganism. However, the breeding and maintenance of these mice, which harbor a diverse microbiome including bacteria, viruses, and parasites, pose significant challenges for animal husbandry facilities at research institutions. To address these challenges, a specialized facility concept was developed for housing "Wildling mice" at Charité - Universitätsmedizin Berlin. This approach involved designing a facility with specific structural features and operational protocols to effectively contain the natural microbiome, thereby protecting areas with higher hygiene standards. A methodology for blood sampling from both specified pathogen-free (SPF) and "Wildling mice" for immunophenotyping is demonstrated, highlighting the workflow and biocontainment measures implemented in the facility. Remarkable results reveal that "Wildling mice" exposed to a natural microbiome develop distinct immune cell populations, which are significantly reduced in mice bred and maintained under stringent hygiene conditions. The significance of this study lies in its potential to provide researchers with access to mice that possess a natural microbiome and a mature immune system similar to that of human adults. This approach could enhance the translatability of preclinical findings into clinical practice, thereby advancing the field of biomedical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67100 | DOI Listing |
Mol Ecol
January 2025
ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.
Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.
View Article and Find Full Text PDFBiosci Microbiota Food Health
August 2024
Department of Food Science, Széchenyi István University, Mosonmagyaróvár, 9200, Hungary.
The global probiotics market has been continuously growing, driven by consumer demand for immune-enhancing functional foods, dietary supplements, and natural therapeutics for gastrointestinal and gut function-mediated diseases. Probiotic microorganisms represent a diverse group of strains with complex but generalized mechanistic patterns. This review describes the various immunomodulatory mechanisms by which probiotics exert their effects, including the competitive exclusion of pathogenic microbes, production of antimicrobial substances, modulation of the immune system, and improvement of gut barrier function.
View Article and Find Full Text PDFUnlabelled: Members of the gut microbiome encounter a barrage of host- and microbe-derived microbiocidal factors that must be overcome to maintain fitness in the intestine. The long-term stability of many gut microbiome strains within the microbiome suggests the existence of strain-specific strategies that have evolved to foster resilience to such insults. Despite this, little is known about the mechanisms that mediate this resistance.
View Article and Find Full Text PDFMulticellular organisms host a rich assemblage of associated microorganisms, collectively known as their "microbiomes". Microbiomes have the capacity to influence their hosts' fitnesses, but the conditions under which such influences contribute to evolution are not clear. This is due in part to a lack of a comprehensive theoretical framework for describing the combined effects of host and associated microbes on phenotypic variation.
View Article and Find Full Text PDFMicrobiome
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.
Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!