A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Visualization of Mechanical Force Regulation of Exosome Secretion Using High Time-Spatial Resolution Imaging. | LitMetric

AI Article Synopsis

  • Exosomes are small vesicles that help cells communicate and are influenced by the tumor environment, with mechanical forces potentially enhancing their release.
  • Researchers used advanced imaging techniques to study how mechanical forces affect exosome release in real time, observing that these forces lead to more exosome release through the fusion of multivesicular bodies with the cell membrane.
  • They identified that changes in the actin structure of cells, triggered by mechanical forces, are key to this process, paving the way for new strategies to address disease-related exosomes.

Article Abstract

Exosomes are small endosome-derived extracellular vesicles that participate in cell-cell communication, particularly in the context of tumorigenesis, and their secretion is influenced by the tumor microenvironment. While previous studies suggest that mechanical forces may enhance exosome release, the direct relationship between these forces and exosome secretion needs to be further characterized. Here, we utilized dual-color CD63 reporter-based high-speed live-cell imaging to visualize how mechanical forces influence exosome release in situ. Through live-cell tracking, we observed the dynamic fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) to release exosomes at the single-vesicle level. More importantly, we directly detected a real-time stimulatory effect of mechanical forces on exosome release, with a bulk release of exosomes occurring under mechanical pressure stimulation. Furthermore, we identified mechanical force-induced actin rearrangement as a crucial determinant of exosome release. Our findings provide direct insights into the role of mechanical forces in exosome release and lay the groundwork for developing potential strategies to target disease-derived exosomes from their source.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c04690DOI Listing

Publication Analysis

Top Keywords

exosome release
20
mechanical forces
16
forces exosome
12
exosome secretion
8
release exosomes
8
exosome
7
release
7
mechanical
6
forces
5
visualization mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!