Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Incorporating nanomaterials into hydrogels allows for the creation of versatile materials with properties that can be precisely tailored by manipulating their nanoscale structures, leading to a wide range of bulk properties. Investigating the structural and property characteristics of composite hydrogels is crucial in tailoring their performance for specific applications. This study focuses on investigating the correlation between the structural arrangement and properties of a composite hydrogel of thermoresponsive polymer, gelatin, and light-responsive antimicrobial porous gold nanorods (PAuNRs). The rheomechanical properties of the composite hydrogels are correlated with their nanoscale structural characteristics, investigated using small-angle neutron scattering (SANS). Analysis of SANS data reveals a decrease in the fractal dimension of PAuNRs incorporated hydrogel matrix, as compared to pure gelatin. Incorporating PAuNRs results in the formation of a softer composite hydrogel, as evident from the decrease in viscoelastic moduli, critical yield strain, denaturation temperature, and swelling ratio. Our results demonstrate that the structural modulation at the nanoscale can be precisely controlled through adjusting PAuNRs concentration and temperature, providing a fabrication mechanism for hydrogels with desired elastic properties. The reduced elasticity of the composite hydrogel and light-sensitive/antimicrobial property of the PAuNRs make this system suitable for specific biomedical applications, such as tissue engineering, device fabrication, and stimuli-based controlled drug delivery devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0238568 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!