AI Article Synopsis

  • This study highlights the critical role of light in facilitating exciton formation and separation in photocathodes, essential for charging lithium-ion batteries.
  • Light induces oxidation changes in titanium-based cathodes, while heat fails to produce similar effects.
  • The research suggests that effectively managing heat and light can lead to more efficient solar energy systems with minimal impact on battery components.

Article Abstract

Does light or heat play a seminal role in photo-rechargeable batteries? This study unravels the effects of light in the exciton formation and separation processes in a photocathode, leading to the charging or de-intercalation of Li ions in a lithium-ion battery. Light induced oxidation of Ti to Ti in the Li(TiS-TiO) heterostructure cathode is shown here, while heating does not elicit such changes. With the aid of photogenerated electrons at the cathode, the de-lithiated Li ions from Li(TiS-TiO) get intercalated in the graphite anode during the photocharging process. Direct or passive heating leads to the degradation of the cathode electrolyte interface (CEI), instigating enhancement in open circuit potential. In contrast, photocharging leaves the organic electrolytes and CEI unaffected. Hence energy efficient photo-electrochemical energy systems can be built by carefully isolating the effects of heat and light in solar radiation, as dictated by this study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c04013DOI Listing

Publication Analysis

Top Keywords

light heat
8
light
5
heat dissecting
4
dissecting de-intercalation
4
de-intercalation photo-rechargeable
4
photo-rechargeable batteries
4
batteries light
4
heat play
4
play seminal
4
seminal role
4

Similar Publications

Photo-thermal catalysis, leveraging both thermal and non-thermal solar contributions, emerges as a sustainable approach for fuel and chemical synthesis. In this study, an Fe-based catalyst derived from a metal-organic framework is presented for efficient photo-thermal ammonia (NH) decomposition. Optimal conditions, under light irradiation without external heating, result in a notable 55% NH conversion.

View Article and Find Full Text PDF

Tetrafluoro(aryl)sulfanylated Bicyclopentane Crystals That Self-Destruct upon Cooling.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States.

Article Synopsis
  • Single crystals of organic compounds that respond to heat or light are well-studied, but those showing extreme mechanical response are less common in research.
  • A tetrafluoro(aryl)sulfanylated bicyclopentane developed in this study exhibited a low-temperature thermosalient effect, where crystals jumped and disintegrated at temperatures below ∼193 K.
  • Investigations using various techniques revealed that the mechanical response is not solely due to a chemical transformation or phase transition, but rather related to the release of built-up strain and possibly influenced by microstructural changes or impurities within the crystal.
View Article and Find Full Text PDF

Enhancing Optical Properties of Lead-Free CsNaBiCl Nanocrystals via Indium Alloying.

Inorg Chem

January 2025

School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.

This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is a neurodegenerative disorder affecting mainly older individuals, and this study explores the role of anoikis-related genes (ARGs) in understanding the disease better.
  • Researchers analyzed gene expression data from healthy and AD-affected brains, pinpointing differentially expressed genes and focusing on 47 ARGs, with HSP90B1 identified as a significant marker correlating with AD.
  • Experiments showed that inhibiting HSP90B1 improves cell viability and reduces inflammation in AD models, suggesting potential new pathways for treatment or understanding the disease’s mechanisms.
View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!