Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress. Here, germline knockout mice were used to determine contributions by three major ISR kinases, HRI/EIF2AK1, GCN2/EIF2AK4, and PKR//EIF2AK2, to pathogenesis of moderate contusive spinal cord injury (SCI) at the thoracic T9 level. One-day post-injury (dpi), reduced levels of peIF2α were found in Hri and Gcn2, but not in Pkr mice. In addition, Hri mice showed attenuated expression of the downstream ISR transcripts, Atf4 or Chop. Such differential effects of SCI-activated ISR correlated with a strong or moderate enhancement of locomotor recovery in Hri or Gcn2 mice, respectively. Hri mice also showed reduced white matter loss, increased content of oligodendrocytes (OL) and attenuated neuroinflammation, including decreased lipid accumulation in microglia/macrophages. Cultured neonatal Hri OLs showed lower ISR cytotoxicity. Moreover, cell autonomous reduction in neuroinflammatory potential was observed in microglia and bone marrow-derived macrophages derived from Hri mice. These data identify HRI as a major positive regulator of SCI-associated secondary injury. In addition, targeting HRI may enable multimodal neuroprotection to enhance functional recovery after SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24669DOI Listing

Publication Analysis

Top Keywords

hri mice
12
reduced white
8
white matter
8
neuroinflammatory potential
8
contusive spinal
8
spinal cord
8
cord injury
8
stress response
8
hri
8
hri gcn2
8

Similar Publications

Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress.

View Article and Find Full Text PDF

The generation of tissue-specific mouse models has provided a powerful strategy to understand the role of genes in specific tissues/cells of interest under control/basal conditions and in response to physiological and pathological stimuli. Here we describe the generation of cardiomyocyte-specific FoxO1 knockout mice using Cre-loxP technology to examine the role of FoxO1 for the induction of heart enlargement (cardiac hypertrophy) in settings of health and disease. We highlight breeding strategies for generating tissue-specific mouse models and key experimental considerations during characterization.

View Article and Find Full Text PDF

CaMKII suppresses proteotoxicity by phosphorylating BAG3 in response to proteasomal dysfunction.

EMBO Rep

October 2024

Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.

Protein quality control serves as the primary defense mechanism for cells against proteotoxicity induced by proteasome dysfunction. While cells can limit the build-up of ubiquitinated misfolded proteins during proteasome inhibition, the precise mechanism is unclear. Here, we find that protein kinase Ca/Calmodulin (CaM)-dependent protein kinase II (CaMKII) maintains proteostasis during proteasome inhibition.

View Article and Find Full Text PDF

The integrated stress response (ISR) is a vital signaling pathway initiated by four kinases, PERK, GCN2, HRI and PKR, that ensure cellular resilience and protect cells from challenges. Here, we investigated whether increasing ISR signaling could rescue diabetes-like phenotypes in a mouse model of diet-induced obesity (DIO). We show that the orally available and clinically approved GCN2 activator halofuginone (HF) can activate the ISR in mouse tissues.

View Article and Find Full Text PDF

Targeting ERK-MYD88 interaction leads to ERK dysregulation and immunogenic cancer cell death.

Nat Commun

August 2024

University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France.

The quest for targeted therapies is critical in the battle against cancer. The RAS/MAP kinase pathway is frequently implicated in neoplasia, with ERK playing a crucial role as the most distal kinase in the RAS signaling cascade. Our previous research demonstrated that the interaction between ERK and MYD88, an adaptor protein in innate immunity, is crucial for RAS-dependent transformation and cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!