A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple cation insertion into a polyaromatic hydrocarbon guided by data and computation. | LitMetric

AI Article Synopsis

  • The study focuses on Kcoronene, a potassium-intercalated polycyclic aromatic hydrocarbon, detailing its synthesis, structure, and magnetic properties while outlining a computational method to identify suitable PAHs for metal intercalation.
  • Coronene was selected based on a screening of its electronic structure and available void space, demonstrating stability when intercalated with three potassium ions per coronene molecule.
  • Despite structural changes and disorder caused by potassium intercalation, Kcoronene did not exhibit superconductivity, which contrasts with earlier findings and may be linked to the extensive structural disruption observed.

Article Abstract

We report the synthesis, structural characterization and magnetic properties of Kcoronene, and demonstrate a computational screening workflow designed to accelerate the discovery of metal intercalated polycyclic aromatic hydrocarbon (PAH), a class of materials of interest following reports of superconductivity, but lacking demonstrated and understood characterised material compositions. Coronene is identified as a suitable PAH candidate from a library of PAHs for potassium intercalation by computational screening of their electronic structure and of the void space in their crystal structures, targeting LUMO similarity to C and the availability of suitable sites to accommodate inserted cations. Convex hull calculations with energies from crystal structure prediction based on ion insertion into the identified void space of coronene suggest that the = 3 composition in K coronene is stable at 0 K, reinforcing the suitability of coronone for experimental investigation. Exploration of reaction conditions and compositions revealed that the mild reducing agent KH allows formation of Kcoronene. The structure of Kcoronene solved from synchrotron powder X-ray diffraction features extensive reorientation and associated disorder of coronene molecules compared with the parent pristine host. This is driven by K intercalation and occupation of sites both within and between the coronene stacks that are partially retained from the parent structure. This disruption of the host structure is greater when three cations are inserted per coronene than in reported metal PAH structures where the maximum ratio of cations to PAH is 2. Superconductivity is not observed, contrary to previous reports on K coronene. The expected localised moment response of coronene is suppressed, which may be associated with the combination of extensive disorder and close coronene-coronene contacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697372PMC
http://dx.doi.org/10.1039/d4sc05128aDOI Listing

Publication Analysis

Top Keywords

computational screening
8
coronene
8
void space
8
structure
5
multiple cation
4
cation insertion
4
insertion polyaromatic
4
polyaromatic hydrocarbon
4
hydrocarbon guided
4
guided data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!