Similar Publications

Skeletal muscles contain lipids inside and outside cells, namely intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL), respectively; lipids have also been found to be interspersed between these muscles as adipose tissue, namely intermuscular adipose tissue (IMAT). Metabolized IMCL has been recognized as an important substrate for energy production and their metabolism is determined by the muscle oxidative capacity. Therefore, it has been speculated that muscle oxidative capacity is related to muscle lipid content.

View Article and Find Full Text PDF

Iron-Catalyzed Aerobic Carbonylation of Methane via Ligand-to-Metal Charge Transfer Excitation.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China.

The integration of ligand-to-metal charge transfer (LMCT) catalytic paradigms with radical intermediates has transformed the selective functionalization of inert C-H bonds, facilitating the use of nonprecious metal catalysts in demanding transformations. Notably, aerobic C-H carbonylation of methane to acetic acid remains formidable due to the rapid oxidation of methyl radicals, producing undesired C1 oxygenates. We present an iron terpyridine catalyst utilizing LMCT to achieve exceptional C2/C1 selectivity through synergistic photoexcitation, methyl radical generation, and carbonylation.

View Article and Find Full Text PDF

The chemical recycling of polystyrene (PS) waste to value-added aromatic compounds is an attractive but formidable challenge due to the inertness of the C-C bonds in the polymer backbone. Here we develop a light-driven, copper-catalyzed protocol to achieve aerobic oxidation of various alkylarenes or real-life PS waste to benzoic acid and oxidized styrene oligomers. The resulting oligomers can be further transformed under heating conditions, thus achieving benzoic acid in up to 65% total yield through an integrated one-pot two-step procedure.

View Article and Find Full Text PDF

DC. Regulates Vascular Smooth Muscle Cell Proliferation by Modulating -GlcNAc and MOF Expression.

Prev Nutr Food Sci

December 2024

Aging and Metabolism Research Group, Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea.

Vascular smooth muscle cells (VSMCs) undergo metabolic pathway transitions, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, which are important for their function. Metabolic dysfunction in VSMCs can lead to age-related vascular diseases. -GlcNAcylation, a nutrient-dependent posttranslational modification linked specifically to glucose metabolism, plays an important role in this context.

View Article and Find Full Text PDF

Oxidative stress is augmented under hypoxic environments, which may be attenuated with antioxidant supplementation. We investigated the effects of dietary nitrate (NO-) supplementation combined with high-intensity training performed under hypoxic conditions on antioxidant/pro-oxidant balance. Thirty trained participants were assigned to one of three groups - HNO: hypoxia (13% FO) + NO-; HPL: hypoxia + placebo; CON: normoxia (20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!