A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

More inputs of antibiotics into groundwater but less into rivers as a result of manure management in China. | LitMetric

More inputs of antibiotics into groundwater but less into rivers as a result of manure management in China.

Environ Sci Ecotechnol

Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands.

Published: January 2025

AI Article Synopsis

  • Antibiotics are widely used in livestock, leading to environmental contamination of rivers and groundwater, yet there's insufficient data on their sources and distribution.
  • A new model, MARINA-Antibiotics (China-1.0), estimates antibiotic flows from livestock into China's rivers and groundwater, revealing that antibiotic inputs reduced in rivers but increased in groundwater from 2010 to 2020.
  • Key findings show fluoroquinolones are the main contributors to river pollution, while sulfonamides dominate groundwater pollution, indicating a need for improved strategies to address groundwater contamination due to livestock practices.

Article Abstract

Antibiotics are extensively used in livestock production to prevent and treat diseases, but their environmental impact through contamination of rivers and groundwater is a growing concern. The specific antibiotics involved, their sources, and their geographic distribution remain inadequately documented, hindering effective mitigation strategies for river and groundwater pollution control caused by livestock production. Here we develope the spatially explicit MARINA-Antibiotics (China-1.0) model to estimate the flows of 24 antibiotics from seven livestock species into rivers and leaching into groundwater across 395 sub-basins in China, and examine changes between 2010 and 2020. We find that 8364 tonnes and 3436 tonnes of antibiotics entered rivers and groundwater nationwide in 2010 and 2020, respectively. Approximately 50-90% of these amounts originated from about 40% of the basin areas. Antibiotic inputs to rivers decreased by 59% from 2010 to 2020, largely due to reduced manure point sources. Conversely, antibiotic leaching into groundwater increased by 15%, primarily because of enhanced manure recycling practices. Pollution varied by antibiotic groups and livestock species: fluoroquinolones contributed approximately 55% to river pollution, mainly from pig, cattle, and chicken manure; sulfonamides accounted for over 90% of antibiotics in groundwater, predominantly from pig and sheep manure. While our findings support existing policies promoting manure recycling to mitigate river pollution in China, they highlight the need for greater attention to groundwater pollution. This aspect is essential to consider in developing and designing future reduction strategies for antibiotic pollution from livestock production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697712PMC
http://dx.doi.org/10.1016/j.ese.2024.100513DOI Listing

Publication Analysis

Top Keywords

livestock production
12
2010 2020
12
groundwater
8
antibiotics groundwater
8
rivers groundwater
8
groundwater pollution
8
livestock species
8
leaching groundwater
8
manure recycling
8
river pollution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!