Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Mycoplasmas are structurally simple pathogenic microorganisms that can cause a wide range of diseases in humans and animals and conventional antibiotic therapies of fluoroquinolones and tetracyclines are toxic to young children and young animals and macrolide resistance is increasing. In this context, new anti-mycoplasma antimicrobial agents need to be developed. 22-((4-((4-nitrophenyl)acetamido)phenyl)thio)deoxypleuromutilin (compound 16C) is a novel acetamine phenyl pleuromutilin derivative. This study aimed to evaluate its acute toxicity in mice and generate pharmacokinetic and anti-mycoplasma profiles.
Methods: The safety of compound 16C was preliminarily evaluated by oral and intramuscular acute toxicity tests and single intravenous and intramuscular pharmacokinetic experiments were performed to obtain its pharmacokinetic profile. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-killing curves reflected the effects of the compounds against Five groups consisted of three treatments for compound 16C (20, 40, and 80 mg/kg), and two treatments for tiamulin (oral and intramuscular 40 mg/kg) were continued for 4 d. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected at the end of treatment (96 h) and 4 days later (192 h) to assess the anti-mycoplasma and anti-pneumonia effects. ELISA assays were performed to detect IFN-γ, TNF-α, and IL-8 (CXCL1) in BALF. Lung tissues were fixed with 4% paraformaldehyde and sectioned for histopathological assessment.
Results: The results show that compound 16C has low toxicity (LD > 5,000 mg/kg). Its pharmacokinetic profile is characterized by a short time to maximum concentration (Tmax = 0.24 h), high bioavailability (F = 71.29%), and short elimination half-life (T) (intramuscular and intravenous administration was 2.20 and 1.89 h, respectively). Treatment with compound 16C and intramuscular tiamulin reduced the load in mice. Intramuscular compound 16C and tiamulin also inhibited the release of IFN-γ, TNF-α, and CXCL1, decreasing the accumulation of inflammatory cells in the lungs, thereby mitigating lung damage.
Conclusion: This study proved that compound 16C has a strong antimicrobial effect against , can be rapidly absorbed and has therapeutic efficacy that provides a basis for developing new anti-mycoplasma drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695783 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1491223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!