A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Close Look at Dissolved Silica Dynamics in Disko Bay, West Greenland. | LitMetric

AI Article Synopsis

  • The discharge of calved ice and subglacial runoff in Disko Bay, home to Sermeq Kujalleq glacier, is expected to influence marine biogeochemistry, particularly affecting the marine silica cycle due to elevated dissolved silica (dSi) from glaciers.
  • The study analyzes silica dynamics in various regions around Disko Bay, finding that land-terminating glaciers show conservative dSi patterns, whereas marine-terminating glaciers significantly alter nutrient distribution through subglacial discharge plumes.
  • The research quantifies contributions to dSi enrichment, highlighting that a large fraction comes from saline water entrainment, with minor contributions from icebergs and amorphous silica dissolution, ultimately adding a small but significant dSi flux to the environment.

Article Abstract

Discharge of calved ice, runoff and mixing driven by subglacial discharge plumes likely have consequences for marine biogeochemistry in Disko Bay, which hosts the largest glacier in the northern hemisphere, Sermeq Kujalleq. Glacier retreat and increasing runoff may impact the marine silica cycle because glaciers deliver elevated concentrations of dissolved silica (dSi) compared to other macronutrients. However, the annual flux of dSi delivered to the ocean from the Greenland Ice Sheet is poorly constrained because of difficulties distinguishing the overlapping influence of different dSi sources. Here we constrain silica dynamics around Disko Bay, including the Ilulissat Icefjord and four other regions receiving glacier runoff with contrasting levels of productivity and turbidity. Both dissolved silica and Si* ([dSi]-[NO ]) concentrations indicated conservative dynamics in two fjords with runoff from land-terminating glaciers, consistent with the results of mixing experiments. In three fjords with marine-terminating glaciers, macronutrient-salinity distributions were strongly affected by entrainment of nutrients in subglacial discharge plumes. Entrainment of dSi from saline waters explained 93 ± 51% of the dSi enrichment in the outflowing plume from Ilulissat Icefjord, whereas the direct contribution of freshwater to dSi in the plume was likely 0%-3%. Whilst not distinguished herein, other minor regional dSi sources include icebergs and dissolution of amorphous silica (aSi) in either pelagic or benthic environments. Our results suggest that runoff around Greenland is supplemented as a dSi source by minor fluxes of 0.25 ± 0.67 Gmol yr dSi from icebergs and ∼1.9 Gmol year from pelagic aSi dissolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693982PMC
http://dx.doi.org/10.1029/2023GB008080DOI Listing

Publication Analysis

Top Keywords

dissolved silica
12
disko bay
12
dsi
9
silica dynamics
8
dynamics disko
8
subglacial discharge
8
discharge plumes
8
dsi sources
8
ilulissat icefjord
8
silica
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!