Background: Recurrent spontaneous abortion (RSA) is intricately linked to metabolic dysregulation at the maternal-fetal interface during early gestation. Abnormal levels of essential fatty acids and downstream oxylipins in decidua and chorionic villi have been identified as potential risk factors for RSA. Oxylipins have been linked to excessive inflammation, which might disrupt maternal-fetal immune tolerance, potentially contributing to RSA. Nonetheless, the exact fatty acid-oxylipin metabolic pathway at the matrernal-fetal interface in RSA occurrence remains unknown. Therefore, this research aimed to explore the effect of essential fatty acids, their transport, and downstream oxylipins at the maternal-fetal interface on RSA pathogenesis.
Methods: Plasma, chorionic villus, and decidual tissue samples from the first trimester were collected from healthy pregnant women undergoing elective pregnancy terminations, as well as from patients experiencing spontaneous abortion. The concentrations of essential fatty acids and their downstream oxylipins in the villi and decidua were quantified using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS). The expression of enzymes related to metabolic pathways was investigated by q-PCR. The ratios of M1/M2 macrophages were assessed by flow cytometry (FCM).
Results: This study found elevated concentrations of omega-6 fatty acids, encompassing arachidonic acid (AA), linoleic acid (LA), and dihomo-gamma-linolenic acid (DGLA) in maternal plasma and chorionic villi, whereas lower concentrations were observed in the decidua, than in samples from normal pregnancies. Further analysis revealed that the transport of these fatty acids was dysregulated at the maternal-fetal interface in RSA women, possibly due to the aberrant expression of the fatty acid translocase (FAT/CD36). In addition, this study revealed that RSA patients displayed higher levels of downstream oxylipins, such as prostaglandin F2a (PGF2a), prostaglandin E2 (PGE2), and leukotriene B4 (LTB4) in chorionic villi and decidua. These compounds may contribute to M1 inflammatory macrophage polarization in RSA, thereby forming a highly inflammatory environment and influencing immunomodulation at the maternal-fetal interface.
Conclusion: The study revealed alterations in omega-6 fatty acids, CD36 transport, and AA downstream oxylipins in RSA, which in turn promote M1 macrophage polarization. Thus, this research has established a foundation for identifying potential biomarkers for, and providing novel insights into, the diagnosis and pathophysiology of RSA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700280 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e40515 | DOI Listing |
Scand J Gastroenterol
January 2025
Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.
Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.
Front Neural Circuits
January 2025
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFExposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity.
View Article and Find Full Text PDFCystine/cysteine is critical for antioxidant response and sulfur metabolism in cancer cells and is one of the most depleted amino acids in the PDAC microenvironment. The effects of cystine limitation stress (CLS) on PDAC progression are poorly understood. Here we report that adaptation to CLS (CLSA) promotes PDAC cell proliferation and tumor growth through translational upregulation of the oxidative pentose phosphate pathway (OxPPP).
View Article and Find Full Text PDFExcess lipid droplet (LD) accumulation is associated with several pathological states, including Alzheimer's disease (AD). However, the mechanism(s) by which changes in LD composition and dynamics contribute to pathophysiology of these disorders remains unclear. Apolipoprotein E (ApoE) is a droplet associated protein with a common risk variant (E4) that confers the largest increase in genetic risk for late-onset AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!