Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The current study presents a multiphysics numerical model for a micro-planar proton-conducting solid oxide fuel cell (H-SOFC). The numerical model considered an anode-supported H-SOFC with direct internal reforming (DIR) of methane. The model solves coupled nonlinear equations, including continuity, momentum, mass transfer, chemical and electrochemical reactions, and energy equations. Furthermore, The numerical model results are used in artificial intelligence (AI) models, the K-nearest neighbour (KNN) and, artificial neural network (ANN), to predict the current density and power density of the H-SOFC. The results show that increasing the air-to-fuel (A/F) ratio decreases the current density and overall cell power. In particular, improvements in power and current density observed in H-SOFC when the A/F ratio is set to 0.5, resulting in a respective increase of 2 % and 7 % compared to the initial state at A/F = 1. With an error rate of less than 1 % and an R-score of around 99 %, the ANN model shows good agreement with the numerical results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696671 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e40996 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!