AI Article Synopsis

  • Wheat is the second-most consumed staple food in India, and rising heat waves have highlighted the need for developing heat-tolerant wheat varieties to ensure food security.
  • A study used a mapping population of backcross introgression lines (BILs) derived from a heat-tolerant wild wheat relative to identify quantitative trait loci (QTLs) for traits related to terminal heat tolerance during optimal and heat-stressed conditions.
  • The research led to the discovery of 30 QTLs associated with heat tolerance traits on multiple chromosomes, providing valuable insights and potential markers for genomic breeding aimed at improving heat resilience in wheat plants.

Article Abstract

Wheat, a major cereal crop, is the most consumed staple food after rice in India. Frequent episodes of heat waves during the past decade have raised concerns about food security under impending global warming and necessitate the development of heat-tolerant wheat cultivars. Wild relatives of crop plants serve as untapped reservoirs of novel genetic variations. In the present study a mapping population comprising 311 BCF backcross introgression lines (BILs) developed by crossing and heat-tolerant diploid wild wheat relative accession pau3809 was used to map QTLs for terminal heat tolerance. The homozygous BILs were evaluated for heat stress tolerance component traits under an optimum environment (OE) and a heat-stressed environment (HE) for the two cropping seasons. Data on spike length, spikelet number per spike, peduncle length, thousand-grain weight, grains per spike, days to heading, days to maturity, grain filling duration, NDVI at heading, plant height and plot yield were recorded. Genotyping-by-sequencing (GBS) of the BILs was carried out, and 2945 high-quality, polymorphic SNPs were obtained. Thirty QTLs were detected for various heat tolerance component traits on chromosomes 1A, IB, 2A, 2B, 3B, 4B, 5A, 5B, 6A and 6B with phenotypic variance ranging from 5 to 11.5%. Several candidate genes reported to play a role in heat stress responses were identified by browsing the 1.85 Mb physical region flanking the stable QTLs detected under the HE. Identified QTL and linked markers can be employed for genomics-assisted breeding for heat tolerance in wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695302PMC
http://dx.doi.org/10.3389/fpls.2024.1485914DOI Listing

Publication Analysis

Top Keywords

heat tolerance
16
backcross introgression
8
introgression lines
8
heat stress
8
tolerance component
8
component traits
8
qtls detected
8
heat
6
tolerance
5
wheat
5

Similar Publications

The increasing frequency of heat stress events due to climate change disrupts all stages of plant growth, significantly reducing yields, especially in crops like mung bean (Vigna radiata (L.) R. Wilczek).

View Article and Find Full Text PDF

Cooperative condensation of RNA-DIRECTED DNA METHYLATION 16 splicing isoforms enhances heat tolerance in Arabidopsis.

Nat Commun

January 2025

The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.

Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes.

View Article and Find Full Text PDF

Aims: Gestational diabetes mellitus (GDM) is the most common complication of pregnancy and is known to be associated with an increased risk of postpartum metabolic disease. Based on the important role that the intestinal microbiota plays in blood glucose regulation and insulin sensitivity, supplementation of probiotic and postbiotic strains could improve glucose metabolism and tolerance in GDM.

Main Methods: 56 4-week-old female C57BL/6J-mice were divided into 4 groups (n = 14 animals/group): control (CNT), high-fat/high-sucrose (HFS), pA1c® alive (pA1c®) and heat-inactivated pA1c® (pA1c®HI).

View Article and Find Full Text PDF

Take a Deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress.

Plant Physiol

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.

Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.

View Article and Find Full Text PDF

The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!