Sweet cherry is a high-value crop, and strategies to enhance production and sustainability are at the forefront of research linked to this crop. The improvement of plant status is key to achieving optimum yield. Biostimulants, such as glycine betaine (GB) or seaweed-based biostimulants [e.g., (EM)], can represent a sustainable approach to improving plant conditions, even under adverse environmental circumstances. Despite their potential, few studies have focused on the effects of GB or EM exogenous application on sweet cherry tree physiology. To address this lack of research, a study was conducted in a Portuguese sweet cherry commercial orchard, using and cultivars. Trees were treated with products based on GB and EM at two different concentrations [GB 0.25% (v/v) and GB 0.40% (v/v); EM 0.30% (v/v) and EM 0.15% (v/v)], a combination of the lowest concentrations of both biostimulants (Mix -GB 0.25% and EM 0.15%), and a control group (C) treated with water. Applications were performed over three consecutive years (2019, 2020, and 2021) at three different phenological stages, according to the BBCH scale: 77, 81, and 86 BBCH. Results showed, in general, that the application of biostimulants led to improvements in water status as well as significantly lower values of electrolyte leakage and thiobarbituric acid reactive substances compared to C samples. Additionally, biostimulants reduced pigment loss in the leaves and enhanced their biosynthesis. The Chlorophyll/Chlorophyll ratio, ranging from 2 to 4, indicated a greater capacity for light absorption and lower stress levels in treated leaves. Soluble sugar and starch content decreased during fruit development in both cultivars and years; however, biostimulants increased these contents, with increments of approximately 15% to 30% in leaves treated with EM. Soluble protein content also showed the same pattern for treated leaves. Biostimulants, especially EM, demonstrated a significant positive effect ( ≤ 0.001) on total phenolic content, with increases of approximately 25% to 50% in treated leaves. In conclusion, the application of biostimulants, especially algae-based, significantly improved tree performance by enhancing physiological parameters and stress resilience and could represent a novel approach in fruit production systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695132PMC
http://dx.doi.org/10.3389/fpls.2024.1467376DOI Listing

Publication Analysis

Top Keywords

sweet cherry
16
treated leaves
12
biostimulants
9
glycine betaine
8
betaine seaweed-based
8
seaweed-based biostimulants
8
water status
8
application biostimulants
8
treated
6
leaves
5

Similar Publications

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

Pathovar Infection Reveals Different Defense Mechanisms in Two Sweet Cherry Cultivars.

Plants (Basel)

December 2024

Facultad de Ciencias Agronómicas, Departamento de Sanidad Vegetal, Universidad de Chile, La Pintana 8820808, Chile.

pv. is the main causal agent of bacterial canker in sweet cherry in Chile, causing significant economic losses. Cultivars exhibit diverse susceptibility in the field and the molecular mechanisms underlying the differential responses remain unclear.

View Article and Find Full Text PDF

Cerasus is a subgenus of Prunus in the family Rosaceae that is popular owing to its ornamental, edible, and medicinal properties. Understanding the evolution of the Cerasus subgenus and identifying selective trait loci in edible cherries are crucial for the improvement of cherry cultivars to meet producer and consumer demands. In this study, we performed a de novo assembly of a chromosome-scale genome for the sweet cherry (Prunus avium L.

View Article and Find Full Text PDF

The Sweet Cherry Tree Genotype Restricts the Aggressiveness of the Wood Decay Fungi and .

Microorganisms

November 2024

Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile.

The wood decay fungi and severely threaten the worldwide cultivation of sweet cherry trees ( L.). Both fungi cause similar symptoms, including vascular necrosis, which leads to branch and twig dieback.

View Article and Find Full Text PDF

Oviposition Preference and Developmental Performance of on Different Cherry Cultivars.

Insects

December 2024

Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100093, China.

is a major pest of sweet cherries. In this study, we evaluated its oviposition preferences across six cherry cultivars and assessed the effects of the fruit traits on its growth and development. Significant differences in the color, firmness, and sugar content were observed among the cultivars and ripeness stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!