Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metastasis and metabolic disorders contribute to most cancer deaths and are potential drug targets in cancer treatment. However, corresponding drugs inevitably induce myeloid suppression and gastrointestinal toxicity. Here, we report a nonpharmaceutical and noninvasive electromagnetic intervention technique that exhibited long-term inhibition of cancer cells. Firstly, we revealed that optical radiation at the specific wavelength of 3.6 m (i.e., 83 THz) significantly increased binding affinity between DNA and histone via molecular dynamics simulations, providing a theoretical possibility for THz modulation- (THM-) based cancer cell intervention. Subsequent cell functional assays demonstrated that low-power 3.6 m THz wave could successfully inhibit cancer cell migration by 50% and reduce glycolysis by 60%. Then, mRNA sequencing and assays for transposase-accessible chromatin using sequencing (ATAC-seq) indicated that low-power THM at 3.6 m suppressed the genes associated with glycolysis and migration by reducing the chromatin accessibility of certain gene loci. Furthermore, THM at 3.6 m on HCT-116 cancer cells reduced the liver metastasis by 60% in a metastatic xenograft mouse model by splenic injection, successfully validated the inhibition of cancer cell migration by THM . Together, this work provides a new paradigm for electromagnetic irradiation-induced epigenetic changes and represents a theoretical basis for possible innovative therapeutic applications of THM as the future of cancer treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697589 | PMC |
http://dx.doi.org/10.34133/2022/9860679 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!