The effect of long-term administration of green tea catechins on aging-related cardiac diastolic dysfunction and decline of troponin I.

Genes Dis

Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.

Published: March 2025

AI Article Synopsis

  • Aging increases the risk of cardiovascular diseases, particularly cardiac diastolic dysfunction (CDD), which can lead to heart failure with preserved ejection fraction (HFpEF) in older adults.
  • Research indicates that green tea catechins, specifically epigallocatechin gallate (EGCG), may help improve cardiovascular issues related to aging in both animal models and humans, yet studies on its long-term effects on CDD are limited.
  • In this study, older mice treated with EGCG showed a prevention of aging-related CDD and improvements in heart function, attributed to enhanced expression of cardiac troponin I (cTnI) and reduced mitochondrial damage through the inhibition of histone deacetylase 1 (HDAC1).

Article Abstract

Aging is an independent risk factor for cardiovascular diseases. Cardiac diastolic dysfunction (CDD), ultimately leading to heart failure with preserved ejection fraction (HFpEF), is prevalent among older individuals. Although therapeutics have made great progress, preventive strategies remain unmet medical needs. Green tea catechins have been shown to be effective in improving aging-related cardiovascular and cerebral disorders in animal models and patients. However, little attention has been paid to whether long-term administration of epigallocatechin gallate (EGCG), the major bioactive ingredient of green tea catechins, could prevent the onset and progression of CDD. In this study, 12-month-old female mice were orally administered 50, 100 and 200 mg EGCG mixed with drinking water for 6 months. Aged mice (18 months old) exhibited the major features of HFpEF, including CDD with pEF, cardiac fibrosis, increased cardiomyocyte apoptosis, and mitochondrial damages, as well as elevated A/B-type natriuretic peptide. Cardiac troponin I (cTnI) expression was also reduced. Long-term administration of 100 or 200 mg EGCG prevented aging-related CDD and exercise capacity decline, along with alleviating myocardial apoptosis and mitochondria damage. The transcription and protein expression of cTnI were increased, which might be achieved by inhibiting the expression and activity of histone deacetylase 1 (HDAC1), and reducing its binding level near cTnI's promoter, thereby elevating acetylated histone 3 (AcH3) and acetylated lysine 9 on histone H3 (AcH3K9) in the aged mice. We provide a novel insight that long-term administration of EGCG is a potentially effective strategy in preventing aging-related CDD and cTnI expression decline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699727PMC
http://dx.doi.org/10.1016/j.gendis.2024.101284DOI Listing

Publication Analysis

Top Keywords

long-term administration
16
green tea
12
tea catechins
12
cardiac diastolic
8
diastolic dysfunction
8
100 200 mg
8
200 mg egcg
8
aged mice
8
ctni expression
8
aging-related cdd
8

Similar Publications

Enhancing cell-mediated immunity through dendritic cell activation: the role of Tri-GalNAc-modified PLGA-PEG nanoparticles encapsulating SR717.

Front Immunol

January 2025

State Key Laboratory for Animal Disease Control and Prevention & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.

Introduction: Vaccines against intracellular pathogens like require the induction of effective cell-mediated immunity. Adjuvants primarily enhance antigen-induced adaptive immunity by promoting the activation of antigen-presenting cells (APCs).This study is to develop an adjuvant targeted to dendritic cells (DCs), one of the main APCs, so as to assist in inducing a long-term cellular immune response to protein antigens.

View Article and Find Full Text PDF

Epithelial immunotherapy for food allergy in children: a systematic review and meta-analysis.

Front Immunol

January 2025

Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.

Objectives: Traditional methods of treating allergies primarily revolve around avoiding allergens and promptly using rescue medications when allergic symptoms occur. However, this approach is known for its inefficiency and limited success in achieving long-term relief. Our aim was to conduct a comprehensive analysis of previously published randomized controlled trials (RCTs) that explore the effectiveness and safety of epicutaneous immunotherapy (EPIT) as a means to manage food allergies in children.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a prevalent chronic, non-communicable disease. The long-term health effects of dietary live microbes, primarily probiotics, on CKD patients remain insufficiently understood. This study aims to investigate the association between dietary intake of live microbes and long-term health outcomes among individuals with CKD.

View Article and Find Full Text PDF

Background: Fluoroethylnormemantine (FENM), a new Memantine (MEM) derivative, prevented amyloid-β[25-35] peptide (Aβ)-induced neurotoxicity in mice, a pharmacological model of Alzheimer's disease (AD) with high predictive value for drug discovery. Here, as drug infusion is likely to better reflect drug bioavailability due to the interspecies pharmacokinetics variation, we analyzed the efficacy of FENM after chronic subcutaneous (SC) infusion, in comparison with IP injections in two AD mouse models, Aβ-injected mice and the transgenic APP/PSEN1 (APP/PS1) line.

Methods: In Aβ-treated mice, FENM was infused at 0.

View Article and Find Full Text PDF

Background: Bacterial vaginosis (BV) is a prevalent vaginal condition among reproductive-age women, characterized by off-white, thin vaginal discharge with a fishy odor. It increases susceptibility to sexually transmitted diseases (STDs) and pelvic inflammatory disease (PID). BV involves a shift in vaginal microbiota, with reduced lactobacilli and increased anaerobic bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!