Introduction: α-Calcium sulfate hemihydrate (α-CSH) is a widely used artificial bone graft material, but it suffers from rapid deterioration and limited osteoinductivity. This study aims to develop composite cements by combining treated dentin matrix (TDM) with α-CSH to enhance osteogenic properties for the healing of bone deformities.

Methods: The composite cements were prepared by mixing treated dentin matrix (TDM) with α-calcium sulfate hemihydrate (α-CSH) and characterized for their mechanical, morphological, and chemical properties using a universal mechanical testing machine, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The biological performance was assessed by measuring osteoblast proliferation using the CCK-8 test and evaluating new bone formation in a calvarial bone defect model in rats.

Results: The compressive strength of the TDM/α-CSH cements decreased with increasing TDM mass ratio, while SEM analysis revealed a distinct three-dimensional porous network structure and increased surface roughness upon thorough mixing. XRD and FTIR studies confirmed the physical mixture of the two materials without phase changes. The TDM/α-CSH composites significantly stimulated osteoblast proliferation, which was dependent on the TDM content, and demonstrated superior enhancement in new bone formation as confirmed by X-ray examination and micro-CT analysis.

Discussion: The findings suggest that TDM/α-CSH composite cements have promising potential as an alternative for repairing bone defects due to their improved mechanical properties, osteoblast proliferation, and enhanced new bone formation .

Conclusion: TDM/α-CSH composite cements show potential as a novel bone graft material, offering advantages in terms of mechanical strength, osteoconductivity, and osteoinductivity, making them a viable option for bone repair applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696286PMC
http://dx.doi.org/10.3389/fbioe.2024.1468296DOI Listing

Publication Analysis

Top Keywords

composite cements
16
α-calcium sulfate
12
dentin matrix
12
osteoblast proliferation
12
bone formation
12
bone
10
sulfate hemihydrate
8
hemihydrate α-csh
8
bone graft
8
graft material
8

Similar Publications

HEMA-free versus HEMA-containing adhesive systems: a systematic review.

Syst Rev

January 2025

Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Postal Code, 35516, Egypt.

Background: Hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA)-free adhesive systems are gaining increasing popularity nowadays. Although the addition of HEMA to dental adhesives improves dentin wettability and resin diffusion into demineralized collagen fibrils, HEMA's high hydrophilicity can lead to hydrolytic degradation of the adhesive interface. Thus, HEMA-free adhesive systems have been developed.

View Article and Find Full Text PDF

The Aim Of The Study: Was to elaborate and assess biocompatible compositions based on oligocarbonate methacrylate filled with hydroxyapatite.

Materials And Methods: The manufacturing methods of the compositions are considered, and their polymerization ability, strength and elastic properties are evaluated.

Results: The highest values of hardness and elasticity were found in the composition containing 0.

View Article and Find Full Text PDF

Influence of surface treatments on highly translucent zirconia: Mechanical, optical properties and bonding performance.

J Dent

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:

Objectives: Highly translucent yttria-stabilized zirconia (YSZ) has become more popular due to its enhanced aesthetics. This study aimed to evaluate the influence of traditional air abrasion and a new etching and cleaning agent, Multi Etchant, on the mechanical performance, optical properties, and bond strength of highly translucent zirconia.

Methods: Specimens of 6YSZ, 5YSZ, 4YSZ&5YSZ, and conventional 3YSZ were fabricated and underwent different surface treatments, including as milled, air abrasion, and Multi Etchant.

View Article and Find Full Text PDF

Insight into migration of Cr(VI) in self-hardening slurry materials for trench cutoff wall.

Environ Res

January 2025

Zijin School of Geology and Mining, Fuzhou University, Fuzhou, 350108, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China. Electronic address:

The migration and immobilization of heavy metals in soil and groundwater pose significant environmental challenges, particularly in the context of Cr(VI), a highly toxic and mobile contaminant. Self-hardening slurry materials, commonly used for trench cutoff walls, have gained great attention due to their potential for pollutant containment. However, the relationship between their adsorption properties and pollutant diffusion behaviors remains poorly understood.

View Article and Find Full Text PDF

Purpose: This retrospective clinical study aims to analyze single-unit implant-supported restorations' clinical and radiographic outcomes comprehensively.

Materials And Methods: In this retrospective study, patients who had undergone 12 months of implant-supported singleunit fixed prosthetic treatment were scanned from the archives, and a hundred patients were included in the study. Implant success and survival rates were assessed according to the consensus decisions published at the International Oral Implantology Congress in 2007.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!