AI Article Synopsis

  • New tetrakis Eu and Gd β-diketonate complexes with benzimidazolium as a counterion were synthesized using a one-pot method, and one specific complex was incorporated into a PMMA matrix showing excellent photonic features.
  • Characterization techniques like ESI-MS, FTIR, and X-ray diffraction were used to analyze the complexes, revealing unique intermolecular interactions and stability of the PMMA-doped material at high temperatures.
  • The study highlighted that the materials exhibited strong photoluminescence with significant red emission when exposed to various UV wavelengths and sunlight, suggesting their potential as efficient light-converting molecular devices.

Article Abstract

New tetrakis Eu and Gd β-diketonate complexes containing benzimidazolium (Bzim) as the counterion were synthesized by the one-pot method. The Bzim[Eu(tta)]·HO complex was further incorporated into a poly(methyl methacrylate) matrix (PMMA) at 1, 5, and 10% (w/w), which revealed highly desirable photonic features. The Eu and Gd complexes were characterized by elemental and thermal analyses, in addition to ESI-MS spectrometry, FTIR, and Raman spectroscopy. Single-crystal X-ray diffraction studies of the tetrakis Bzim[Eu(tta)]·EtOH complex revealed that the Bzim counteraction and EtOH molecules exhibited several intermolecular interactions with very short hydrogen bond distances between two [Eu(tta)] anion units. The PMMA:(1%) Bzim[Eu(tta)]-doped material was thermally stable up to 120 °C, which was close to the values found for the Eu-complex. Regarding the photoluminescence properties, either the Bzim[Eu(tta)]·HO or the doped films showed intense emission arising from the metal ion over a wide range of excitation wavelengths comprising UVA, UVB, and UVC regions. In addition, when the polymer films were exposed to sunlight radiation in an open external environment, the materials revealed a high Eu-centered red emission arising from the D → F transition. The Bzim[Eu(tta)]·HO and Bzim[Eu(tta)]·EtOH complexes showed high absolute quantum yields ( ) of 56% and 70%, respectively, whereas the doped polymer films displayed only ∼38%. All materials exhibited a highly red monochromatic emission characteristic. We believe that such luminescent systems could be promising photonic materials with a wide excitation range, including UVA, UVB, UVC, and sunlight, acting as efficient light-converting molecular devices (LCMDs).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698126PMC
http://dx.doi.org/10.1039/d4ra06451hDOI Listing

Publication Analysis

Top Keywords

tetrakis β-diketonate
8
emission arising
8
uva uvb
8
uvb uvc
8
polymer films
8
high red
4
red luminescence
4
luminescence intensity
4
intensity sunlight
4
sunlight exposure
4

Similar Publications

The development of a newly fabricated ion-selective electrode (ISE) solid-contacted type for the determination of prucalopride succinate represents a significant advancement in analytical chemistry, particularly in the context of green chemistry principles. The optimization process involved numerous trials to ensure the selection of a cation exchanger and ionophore that offer high sensitivity and selectivity for prucalopride succinate. Through these optimization trials, sodium tetrakis was identified as the most suitable cation exchanger, while calix [8] arene demonstrated the highest affinity towards prucalopride succinate as the ionophore.

View Article and Find Full Text PDF
Article Synopsis
  • New tetrakis Eu and Gd β-diketonate complexes with benzimidazolium as a counterion were synthesized using a one-pot method, and one specific complex was incorporated into a PMMA matrix showing excellent photonic features.
  • Characterization techniques like ESI-MS, FTIR, and X-ray diffraction were used to analyze the complexes, revealing unique intermolecular interactions and stability of the PMMA-doped material at high temperatures.
  • The study highlighted that the materials exhibited strong photoluminescence with significant red emission when exposed to various UV wavelengths and sunlight, suggesting their potential as efficient light-converting molecular devices.
View Article and Find Full Text PDF

We report herein a facile synthesis, characterization, and the electron transfer reaction of a novel light-harvesting material composed of laser-induced graphene (LIG) functionalized with the photoactive 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin tetra(-toluenesulfonate) dye (TTMAPP). LIG was easily fabricated on the surface of a polyimide sheet using VersaLASER 3.6 (VLS 3.

View Article and Find Full Text PDF

Since the 1980s, pressure-sensitive paint (PSP) has been used as an optical pressure sensor for measuring surface pressure on aircraft models in wind tunnels. Typically, PSPs have utilized platinum(II)-5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin due to its high pressure sensitivity, phosphorescence lifetime of ∼50 μs, reasonable quantum yield of emission, and resistance to photo-oxidation. This work investigates the photophysics and electronic structure of metal complexes of 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin, namely, Zn(II), Pd(II), and Ir(III), as potentially improved luminophores for polymer-based PSPs.

View Article and Find Full Text PDF

The nutritional status of fathers plays a significant role in influencing the growth, metabolism, and susceptibility to diseases in their offspring. Paternal zinc deficiency can lead to developmental programming effects on the offspring's zinc homeostasis. This study investigated the effects of paternal zinc deficiency on the zinc homeostasis of offspring in a Drosophila melanogaster (fruit fly) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!