A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanistic insights into cardiac regeneration and protection through MEIS inhibition. | LitMetric

Mechanistic insights into cardiac regeneration and protection through MEIS inhibition.

Turk J Biol

Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkiye.

Published: October 2024

AI Article Synopsis

  • MEIS1 is a key regulator in stopping cardiomyocyte cell division and is a potential target for heart-related therapies.
  • Inhibition of MEIS1 through new small molecules (MEISi-1 and MEISi-2) boosts the growth and division of neonatal cardiomyocytes significantly compared to untreated cells.
  • MEIS1 inhibition not only reduces the expression of certain target genes but also enhances important cardiac-specific gene expression, suggesting these inhibitors could play a vital role in heart regeneration treatments.

Article Abstract

MEIS1, a member of the TALE-type homeobox gene family, has emerged as a pivotal regulator of cardiomyocyte cell cycle arrest and represents a promising therapeutic target. Our study reveals that inhibition of MEIS1 using two novel small molecules, MEISi-1 and MEISi-2, significantly enhances neonatal cardiomyocyte proliferation and cytokinesis. Specifically, MEISi-1 and MEISi-2 increased the proportion of proliferating cardiomyocytes (Ph3+TnnT cells) up to 4.5-fold and the percentage of cytokinetic cardiomyocytes (AuroraB+TnnT cells) by 2-fold, compared to untreated controls. MEIS1 inhibition resulted in a notable downregulation of MEIS1 target genes and cyclin-dependent kinase inhibitors, demonstrating its effect on key regulatory pathways. Additionally, the culture and differentiation of human induced pluripotent stem cells into cardiomyocytes were studied, with MEIS1 inhibition showing no adverse effects on cell viability. Extended treatment with MEIS inhibitors led to a substantial upregulation of critical cardiac-specific genes, including a 15-fold increase in the expression of Nkx2.5. This upregulation significantly impacted both cardiac mesoderm and cardiac progenitor cells. These findings underscore the potential of MEIS1 inhibitors as effective agents in enhancing cardiac regeneration and highlight their therapeutic promise in regenerative cardiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698199PMC
http://dx.doi.org/10.55730/1300-0152.2716DOI Listing

Publication Analysis

Top Keywords

cardiac regeneration
8
inhibition meis1
8
meisi-1 meisi-2
8
meis1 inhibition
8
meis1
6
mechanistic insights
4
cardiac
4
insights cardiac
4
regeneration protection
4
protection meis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!