Impaired bone quality and increased fracture risk are cardinal features of the skeleton in diabetes mellitus. Hyperglycemia-induced oxidative stress is proposed as a potential underlying mechanism, but the precise pathogenic mechanism remains incompletely understood. In this investigation, osteoblasts under high glucose exhibited heightened levels of reactive oxygen species, impaired mitochondrial membrane potential, and profound inhibition of late-stage osteoblast differentiation. Further analyses uncovered that high glucose resulted in the downregulation of the PINK1/Drp1 pathway in osteoblasts, consequently leading to impaired mitophagy. Conversely, the upregulation of PINK1/Drp1 pathway activated mitophagy, which restored the differentiation capacity of osteoblasts. Notably, in an STZ-induced diabetic mouse model, BMP9 upregulated the expression of PINK1/Drp1 in the bone tissue, leading to an improvement in bone quality and bone mineral density. These findings suggest that the PINK1/Drp1 pathway might be a potential therapeutic target to enhance osteogenic differentiation and treat diabetic osteoporosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699391 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.111519 | DOI Listing |
iScience
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Food Funct
March 2022
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Dioscin is a steroidal saponin isolated from various kinds of vegetables and herbs and possesses various biological activities. In this study, the protective effect of dioscin on diabetic nephropathy (DN) was explored. Dioscin and metformin (positive control) were administered orally to diabetic rats daily for 8 weeks.
View Article and Find Full Text PDFWorld J Gastroenterol
April 2020
Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China.
Background: Intestinal ischemia reperfusion (I/R) occurs in various diseases, such as trauma and intestinal transplantation. Excessive reactive oxygen species (ROS) accumulation and subsequent apoptotic cell death in intestinal epithelia are important causes of I/R injury. PTEN-induced putative kinase 1 (PINK1) and phosphorylation of dynamin-related protein 1 (DRP1) are critical regulators of ROS and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!