A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent advances in phytase thermostability engineering towards potential application in the food and feed sectors. | LitMetric

AI Article Synopsis

  • This review highlights recent advancements in engineering thermostable phytase through genetic modification and immobilization techniques over the last seven years.
  • Genetic modifications have improved the enzyme's thermostability and functionality, while immobilization methods have helped retain 50-60% of its activity at temperatures above 50°C.
  • Phytase is essential in the food and feed industries, as it reduces phytate content to enhance nutritional value in flour and poultry feed, making it a robust option for high-temperature applications.

Article Abstract

This review comprehensively examines the advancements in engineering thermostable phytase through genetic modification and immobilization techniques, focusing on developments from the last seven years. Genetic modifications, especially protein engineering, have enhanced enzyme's thermostability and functionality. Immobilization on various supports has further increased thermostability, with 50-60 % activity retention at higher temperature (more than 50 °C). In the food industry, phytase is used in flour processing and bread making, reducing phytate content by around 70 %, thereby improving nutritional value and mineral bioavailability. In the feed industry, it serves as a poultry feed additive, breaking down phytates to enhance nutrient availability and feed efficiency. The enzyme's robustness at high temperatures makes it valuable in feed processing. The integration of microbial production of phytase with genetically engineered strains followed by carrier free immobilization represents a synergistic approach to fortify enzyme structure and improve thermal stability. These advancement in the development of phytase enzyme capable of withstanding high temperatures, thereby pivotal for industrial utilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695551PMC
http://dx.doi.org/10.1007/s10068-024-01690-1DOI Listing

Publication Analysis

Top Keywords

high temperatures
8
feed
5
advances phytase
4
phytase thermostability
4
thermostability engineering
4
engineering potential
4
potential application
4
application food
4
food feed
4
feed sectors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!