Supramolecular Control of the Photoisomerization of a Coumarin-Based Photoswitch.

ACS Omega

Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

Published: December 2024

The complex formation of the cationic stilbene-type photoswitch CP with the anionic macrocycles carboxylato-pillar[5]arene (WP5) and carboxylato-pillar[6]arene (WP6) has been investigated in aqueous solution by optical spectroscopic, NMR and isothermal calorimetric experiments and theoretical calculations. Subsequently, the photoisomerization reactions of the supramolecular complexes formed have been studied. CP consists of a 7-diethylamino-coumarin fluorophore and an -methylpyridinium unit, which are connected via an ethene bridge. The isomer of CP is fluorescent, and its isomer is dark. The binding constants of the WP6 complexes of the two photoisomers of CP are larger by 2 orders of magnitude than those of the respective complexes with WP5, and -CP forms more stable complexes with the individual pillararenes than the isomer. As shown by NMR spectroscopic measurements and theoretical calculations, the two isomers of CP form external complexes with WP5 and inclusion complexes with WP6. On complexation with WP6, the quantum yields of both the -to- and -to- photoisomerization reactions of CP increase significantly, and the fluorescence quantum yield of -CP is also enhanced. These changes are due to the suppression of the TICT deactivation process, which is characteristic of 7-dialkylamino-coumarin derivatives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696389PMC
http://dx.doi.org/10.1021/acsomega.4c08106DOI Listing

Publication Analysis

Top Keywords

theoretical calculations
8
photoisomerization reactions
8
complexes wp5
8
complexes
6
supramolecular control
4
control photoisomerization
4
photoisomerization coumarin-based
4
coumarin-based photoswitch
4
photoswitch complex
4
complex formation
4

Similar Publications

New insight into enhanced permanganate oxidation by lignocellulose-derived biochar: The overlooked role of persistent free radicals.

Water Res

December 2024

The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:

Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.

View Article and Find Full Text PDF

Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.

View Article and Find Full Text PDF

Increasing concerns about climate change and efforts on reducing reliance on fossil fuels have led to research on electric vehicles for sustainable solutions to increasing energy demands. This study comprehensively analyzes the impact of power plant emissions on the adoption of electric vehicles in relation to air pollution. The main pollutants emitted by power plants and the potential change in emissions with the deployment of electric vehicles are assessed.

View Article and Find Full Text PDF

Using High-Entropy Configuration Strategy to Design Spinel Lithium Manganate Cathodes with Remarkable Electrochemical Performance.

Small

January 2025

National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMnO is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn-Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMnO for decades.

View Article and Find Full Text PDF

1D CoMoC-Based Heterojunctional Nanowires from Pyrolytically "Squeezing" PMo/ZIF-67 Cubes for Efficient Overall Water Electrolysis.

Small

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Xuefu Road, Harbin, 150080, P. R. China.

The bi-transition-metal interstitial compounds (BTMICs) are promising for water electrolysis. The previous BTMICs are usually composed of irregular particles. Here, this work shows the synthesis of novel 1D CoMoC-based heterojunction nanowires (1D Co/CoMoC) with diameters about 50 nm and a length-to-diameter ratio about 20 for efficient water electrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!