With the gradual application of enhanced oil recovery by CO (CO-EOR), the rheological behavior of produced fluid is altered due to CO dissolution and degassing. This work focuses on the composition, physical properties, gelation and yield characteristics, and viscosity-temperature properties of crude oil containing paraffinic wax after CO treatment. Special attention is given to the effect of the phase state of CO. It is found that the contents of light hydrocarbons (C-) and liquid paraffin (C-C) decrease by 1.24% and 0.89%, respectively, while the contents of paraffin and microcrystalline wax increase by 1.90% and 1.71%, respectively, as the treatment pressure is increased to 25 MPa from atmospheric pressure. Besides, the content of the saturates decreases by 5.31%, while that of the aromatics, resins, and asphaltenes increases by 2.83%, 1.83%, and 0.65%, respectively, due to the extraction effect of CO on light hydrocarbons. In terms of wax precipitation characteristics, the wax appearance temperature (WAT) and wax precipitation content (WPC) increase with increasing pressure. Particularly, when the pressure increases from 5 to 15 MPa, the WAT and WPC increase by 4 °C and 1.27%, respectively, obviously greater than the other conditions due to the phase transition of CO. Moreover, the morphology of the wax crystals becomes tinier after supercritical CO (scCO) treatment because of the increase in the polarity of the crude oil. Likewise, considering the gelation and yield characteristics, the storage modulus, gelation temperature, and yield stress increase more obviously than the other pressure change conditions as the pressure increases from 5 to 15 MPa. All of the above structural enhancements are owing to the effect of CO treatment, especially scCO treatment, on the content and morphology of the precipitated wax crystals. Last, the apparent viscosity/viscosity also increases with the treatment pressure. The viscosity increases by 1.1 to 2.0 times with the pressure increasing from 5 to 15 MPa, again obviously greater than the other pressure change conditions due to the interior structural changes of the crude oil induced by scCO treatment..
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696407 | PMC |
http://dx.doi.org/10.1021/acsomega.4c08172 | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China.
Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.
View Article and Find Full Text PDFCytotechnology
February 2025
Department of Microbiology, Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000 Pakistan.
Homeostasis of tissues requires a complex balance between cell proliferation and cell death. The disruption of this balance leads to tumors. Cancer is a mortal disease that spreads all over the body, it is an irregular cell growth.
View Article and Find Full Text PDFIn this study, we investigate the thermoelectric properties of functionalized multi-walled carbon nanotubes (F-MWCNTs) dispersed over a flexible substrate through a facile vacuum filtration route. To improve their interfacial adhesion and dispersion, F-MWCNTs underwent hot-pressing. The heat-treatment has improved the nanotubes' connections and subsequently reduced porosity as well, which results in an increasing electrical conductivity upon increasing temperature of hot-pressing.
View Article and Find Full Text PDFSci Rep
January 2025
Young Researchers and Elite Club, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Accurate estimation of interfacial tension (IFT) between nitrogen and crude oil during nitrogen-based gas injection into oil reservoirs is imperative. The previous research works dealing with prediction of IFT of oil and nitrogen systems consider synthetic oil samples such n-alkanes. In this work, we aim to utilize eight machine learning methods of Decision Tree (DT), AdaBoost (AB), Random Forest (RF), K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) to construct data-driven intelligent models to predict crude oil - nitrogen IFT based upon experimental data of real crude oils samples encountered in underground oil reservoirs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
This study explores the enhanced adsorption performance of activated carbon felt (ACF) for Cu(II) and Cd(II) ions, achieved using a dual-synergistic approach combining MnO coating and plasma treatment. ACF's intrinsic properties, including a high surface area (~ 1000-2000 m²/g), large porosity, and excellent mechanical stability, make it a promising material for environmental applications. However, its limited surface functional groups hinder its adsorption efficiency for heavy metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!