Efforts to prevent fouling are crucial in advancing ultrafiltration (UF) membranes, especially in addressing the concentration polarization of the accumulation of dissolved dye molecules in wastewater. This study explores the impact of incorporating graphene oxide (GO) onto eggshell (ES) UF membranes regarding their permeability, rejection efficiency, and permeate flow rate. The ES-GO membranes were obtained from eggshells that were modified with varied concentrations of GO (0.25, 0.5, and 0.75 mg/mL) through a self-assembly method. The performance of these ES-GO membranes was evaluated under different applied pressures (15, 30, 45, and 60 psi) to enhance the filtration capabilities. The assessment focused on membrane permeability, rejection efficiency, and permeate flow rate by measuring flow discharge. The results show that the addition of GO as a surface functionalization effectively prevents fouling and enhances the membrane's performance, achieving a membrane permeability of 2.854 × 10 Darcy and a stable filtration flow rate of approximately 5 mL/s. The most notable improvements in permeability and rejection efficiency were observed using ES-GO UF membranes with 0.5 mg/mL GO at a pressure of 45 psi, yielding a rejection efficiency of 36.6%, as seen in previous studies. Thus, the integration of GO into the ES membrane significantly reduces methylene blue (MB) concentration while maintaining a high flux rates, underscoring GO's role as an effective cohost for minimizing fouling in the filtration process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696748 | PMC |
http://dx.doi.org/10.1021/acsomega.4c05853 | DOI Listing |
ACS Omega
December 2024
Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21 Jatinangor, Sumedang 45363, Indonesia.
Colloids Surf B Biointerfaces
December 2024
Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
Two-dimensional (2D) metal-organic frameworks (MOFs) have been extensively utilized across various research areas. However, the application of 2D MOF-based membranes for the removal of heavy metal ions remains largely unexplored, despite their potential as suitable candidates due to their inherent porosity. In this study, we employed molecular dynamics (MD) simulations to investigate the capacity of a typical 2D MOF, Cu-THQ, for the separation of heavy metal ions, including Cd²⁺, Cu²⁺, Hg²⁺, and Pb²⁺.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:
Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.
View Article and Find Full Text PDFMol Cells
December 2024
Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!