The pore structure of shale is a key factor affecting the occurrence and flow of shale gas, and fractal dimensions can be used to quantitatively describe the complexity of the shale pore structure. In this study, the Leping Formation shale in the Junlian block of the southern Sichuan Basin was investigated. The pore structure characteristics of this shale were examined via low-pressure CO adsorption (LP-COA) and low-temperature N adsorption (LT-NA) methods via field emission scanning electron microscopy (FE-SEM), shale geochemistry, and mineral composition analysis. Pore fractal dimensions were calculated via the Frenkel-Halsey-Hill (FHH) model, and the relationships among the fractal dimensions, shale composition (total organic carbon (TOC), quartz, and clay mineral contents), and pore structure were discussed. The results revealed that the TOC contents of the Leping Formation shale in the study area were high and ranged from 0.9% to 4.48%, with an average of 2.25%. The quartz contents were 17.2% to 60.1%, and the clay mineral contents were 33.8% to 67.2%. On the basis of the FE-SEM and N adsorption-desorption curve analyses, the pore types of the Leping Formation shale were complex and significantly variable in terms of the scale and development of organic pores, intragranular pores, and microfractures. The pore morphologies were mostly narrow slit-type flat pores and four-sided open or cone-type flat pores. The pore size distribution exhibited a multimodal pattern. The pore type was mainly mesopores, followed by micropores and minimal macropores. The specific surface area (SSA) of micropores accounted for more than 78% of the total SSA. The fractal dimension of the shale ranged from 2.262 to 2.618 (with a mean of 2.519), and the fractal dimension ranged from 2.662 to 2.843 (with a mean of 2.739). was greater than , indicating that the internal structure of the pores was significantly more complex than that of the surface. The TOC and clay mineral contents were positively correlated with the Brunauer-Emmett-Teller (BET) SSA and the Barret-Joyner-Halenda (BJH) PV, whereas the quartz content was negatively correlated with the BET SSA and BJH PV. The considered fractal dimensions were positively correlated with the TOC content, clay mineral content, BET SSA, and BJH PV but negatively correlated with the quartz content and average pore diameter. The complexity and heterogeneity of the pore structure of the studied shale were quantitatively evaluated through fractal dimension analysis; thus, this approach can be applied in studies of the characteristics of the shale pore structure distribution and reservoir evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696750 | PMC |
http://dx.doi.org/10.1021/acsomega.4c08141 | DOI Listing |
Circ Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFNative ion channels play key roles in biological systems, and engineered versions are widely used as chemogenetic tools and in sensing devices . Protein design has been harnessed to generate pore-containing transmembrane proteins, but the capability to design ion selectivity based on the interactions between ions and selectivity filter residues, a crucial feature of native ion channels , has been constrained by the lack of methods to place the metal-coordinating residues with atomic-level precision. Here we describe a bottom-up RFdiffusion-based approach to construct Ca channels from defined selectivity filter residue geometries, and use this approach to design symmetric oligomeric channels with Ca selectivity filters having different coordination numbers and different geometries at the entrance of a wide pore buttressed by multiple transmembrane helices.
View Article and Find Full Text PDFThe human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 via motifs that also catalyze SUMO E3 ligase activity.
View Article and Find Full Text PDFSoft Matter
January 2025
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
are famous for their ability to survive in extremely harsh environments, probably due to the unprecedented stability of their lipid membranes. Key features of archaeal lipids (bolalipids) that confer their stability are methyl side groups and cyclopentanes in the alkyl chains, as well as the specific shape of the molecule, which has two headgroups connected by two tails. However, the contribution of each structural parameter to membrane stability and the underlying physical mechanism remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!