Enteric methane emissions, rumen fermentation, and milk composition of dairy cows fed 3-nitrooxypropanol and -malate supplements.

Front Vet Sci

College of Animal Science and Technology, Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, Henan Agricultural University, Zhengzhou, Henan, China.

Published: December 2024

Twenty-four cows were used in a randomized complete block design. Cows were assigned to three groups: (1) Control, (2) 3-nitrooxypropanol (NOP) of 200 mg/kg feed dry matter (10% NOP), and (3) NOP × MAL (10% NOP at 200 mg/kg feed dry matter plus 99% -malate at 10 g/kg feed dry matter). Cows were fed for 10-wk. NOP did not affect dry matter intake (DMI) or milk yield, whereas NOP × MAL decreased DMI but did not affect milk yield. Average methane production decreased by 54% in NOP and by 51% in NOP × MAL. Both NOP and NOP × MAL increased concentrations of milk fat and protein. In addition, concentrations of short-chain fatty acids and total saturated fatty acids increased in both NOP and NOP × MAL. However, total monounsaturated fatty acids and total polyunsaturated fatty acids only increased in NOP × MAL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695317PMC
http://dx.doi.org/10.3389/fvets.2024.1479535DOI Listing

Publication Analysis

Top Keywords

dry matter
16
fatty acids
16
feed dry
12
nop nop × mal
12
cows fed
8
nop 200 mg/kg
8
200 mg/kg feed
8
10% nop
8
milk yield
8
acids total
8

Similar Publications

Controlled-release nitrogen combined with ordinary nitrogen fertilizer improved nitrogen uptake and productivity of winter wheat.

Front Plant Sci

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.

Background: Blending controlled-release nitrogen fertilizer (CRNF) with ordinary nitrogen fertilizer (ONF) is a strategic approach to improve winter wheat nutrient management. This blend provides nitrogen (N) to winter wheat in a balanced and consistent manner, ensuring long-term growth, reducing nutrient loss due to leaching or volatilization, and increasing N use efficiency (NUE).

Aims: CRNF aims to enhance N application suitability, optimizes soil nutrient dynamics, and its widespread use can boost crop NUE and yield.

View Article and Find Full Text PDF

Foliar traits can reflect fitness responses to environmental changes, such as changes in nutrient availability. Species may respond differently to these changes due to differences in traits and their plasticity. Traits and community composition together can influence forest nutrient cycling.

View Article and Find Full Text PDF

A comparative pot study was performed to assess the toxic effects of copper (Cu) and/or zinc (Zn) contaminated wastewater (WW) irrigation on the growth, physiology, and element concentration of wheat grown for two months. The treatments included irrigation with uncontaminated wastewater (WW) as control, Cu-contaminated WW (CuWW), Zn-contaminated WW (ZnWW), and Cu + Zn contaminated WW (CuZnWW) in a completely randomized design. Compared to ZnWW, irrigation with CuWW or CuZnWW had severe effects on growth, physiology, and mineral absorption by wheat.

View Article and Find Full Text PDF

Introduction: In order to elucidate the physiological mechanism of post-flowering assimilate transport regulating the formation of yields in arid regions and to provide technological support for further water-saving and high yields in the wheat region in Xinjiang, we conducted a study on the effects of different fertility periods and different degrees of drought and re-watering on the post-flowering dry matter accumulation and transport of spring wheat and the characteristics of grain filling.

Methods: In two spring wheat growing seasons in 2023 and 2024, a split-zone design was used, with the drought-sensitive variety Xinchun 22 (XC22) and drought-tolerant variety Xinchun 6 (XC6) as the main zones and a fully irrigated control during the reproductive period [CK, 75%~80% field capacity (FC)], with mild drought at the tillering stage (T1, 60%~65% FC), moderate drought at the tillering stage (T2, 45%~50% FC), mild drought at the jointing stage (J1, 60%~65% FC), and mild drought at the jointing stage (J2, 45%~50% FC) as the sub-zones.

Results: The dry matter accumulation of the aboveground parts of wheat (stem sheaths, leaves, and spikes), the transfer rate and contribution rate of nutrient organs, the maximum filling rate (V), and the mean filling rate (V) increased significantly after re-watering in the T1 treatment, and decreased with the deepening of the degree of water stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!