Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The persistence of pharmaceuticals and personal care products (PPCPs) through wastewater treatment and resulting contamination of aquatic environments and drinking water is a pervasive concern, necessitating means of identifying effective treatment strategies for PPCP removal. In this study, we employed machine learning (ML) models to classify 149 PPCPs based on their chemical properties and predict their removal wastewater and water reuse treatment trains. We evaluated two distinct clustering approaches: C1 (clustering based on the most efficient individual treatment process) and C2 (clustering based on the removal pattern of PPCPs across treatments). For this, we grouped PPCPs based on their relative abundances by comparing peak areas measured non-target profiling using ultra-performance liquid chromatography-tandem mass spectrometry through two field-scale treatment trains. The resulting clusters were then classified using Abraham descriptors and log as input to the three ML models: support vector machines (SVM), logistic regression, and random forest (RF). SVM achieved the highest accuracy, 79.1%, in predicting PPCP removal. Notably, a 58-75% overlap was observed between the ML clusters of PPCPs and the Abraham descriptor and log clusters of PPCPs, indicating the potential of using Abraham descriptors and log to predict the fate of PPCPs through various treatment trains. Given the myriad of PPCPs of concern, this approach can supplement information gathered from experimental testing to help optimize the design of wastewater and water reuse treatment trains for PPCP removal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694563 | PMC |
http://dx.doi.org/10.1039/d4ew00892h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!