A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A machine learning framework to predict PPCP removal through various wastewater and water reuse treatment trains. | LitMetric

The persistence of pharmaceuticals and personal care products (PPCPs) through wastewater treatment and resulting contamination of aquatic environments and drinking water is a pervasive concern, necessitating means of identifying effective treatment strategies for PPCP removal. In this study, we employed machine learning (ML) models to classify 149 PPCPs based on their chemical properties and predict their removal wastewater and water reuse treatment trains. We evaluated two distinct clustering approaches: C1 (clustering based on the most efficient individual treatment process) and C2 (clustering based on the removal pattern of PPCPs across treatments). For this, we grouped PPCPs based on their relative abundances by comparing peak areas measured non-target profiling using ultra-performance liquid chromatography-tandem mass spectrometry through two field-scale treatment trains. The resulting clusters were then classified using Abraham descriptors and log  as input to the three ML models: support vector machines (SVM), logistic regression, and random forest (RF). SVM achieved the highest accuracy, 79.1%, in predicting PPCP removal. Notably, a 58-75% overlap was observed between the ML clusters of PPCPs and the Abraham descriptor and log  clusters of PPCPs, indicating the potential of using Abraham descriptors and log  to predict the fate of PPCPs through various treatment trains. Given the myriad of PPCPs of concern, this approach can supplement information gathered from experimental testing to help optimize the design of wastewater and water reuse treatment trains for PPCP removal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694563PMC
http://dx.doi.org/10.1039/d4ew00892hDOI Listing

Publication Analysis

Top Keywords

treatment trains
20
ppcp removal
16
wastewater water
12
water reuse
12
reuse treatment
12
machine learning
8
removal wastewater
8
treatment
8
ppcps
8
ppcps based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!