AI Article Synopsis

  • This research explores the activation of hepatic stellate cells (HSCs) across different types of chronic liver disease (CLD), finding that their activation follows similar mechanisms regardless of the injury type.
  • A single-cell RNA-sequencing atlas was created to categorize HSCs into three profiles: quiescent, initiatory, and myofibroblasts, indicating consistent activation patterns in both mice and humans.
  • The study highlights key transcription factors and novel ligands involved in HSC activation, paving the way for new insights and potential treatments for liver fibrosis.

Article Abstract

Background & Aims: The progression of chronic liver disease (CLD) is characterized by excessive extracellular matrix deposition, disrupting hepatic architecture and function. Upon liver injury, hepatic stellate cells (HSCs) differentiate towards myofibroblasts and become inflammatory, proliferative and fibrogenic. To date, it is still unclear whether HSC activation is driven by similar mechanisms in different aetiologies.

Methods: HSCs from multiple publicly available single-cell RNA-sequencing datasets were annotated and merged into a single-cell HSC activation atlas. Spheroid co-cultures of primary mouse hepatocytes/HSCs (n = 5) and ELISAs on patient plasma samples (n = 80) were performed to validate the mechanistic insight obtained from the HSC atlas.

Results: We established an HSC activation atlas in which HSCs are clearly divided into three distinct transcriptomic profiles: quiescent HSCs, initiatory HSCs and myofibroblasts. These transcriptomic profiles are present in each of the investigated mouse liver injury models as well as in human CLDs, indicating that HSC activation is a conserved process. This activation process is driven by a core set of transcription factors independent of liver injury or species. Furthermore, we reveal novel ligands associated with activation of HSCs in multiple liver injury models and validate the profibrotic effect of parathyroid hormone. Finally, we identify as a conserved marker for quiescent HSCs and a biomarker of liver fibrosis in patients with different CLDs (0.0001).

Conclusions: We reveal unexpected similarities in the regulatory mechanisms of HSCs across diverse liver injury settings and species. The HSC activation atlas has the potential to provide novel insights into liver fibrosis and steer novel treatment options.

Impact And Implications: This study establishes a single-cell atlas of hepatic stellate cells across various liver injuries, highlighting a conserved activation process between different injuries and across species. The discovery of novel activating ligands and the biomarker COLEC10 in human plasma could be used to enhance diagnostic and therapeutic strategies. Additionally, the conserved activation process supports the use of any mouse model for mechanistic studies and testing of new anti-fibrotic compounds, streamlining preclinical research efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699746PMC
http://dx.doi.org/10.1016/j.jhepr.2024.101223DOI Listing

Publication Analysis

Top Keywords

liver injury
20
hsc activation
20
activation process
16
hepatic stellate
12
activation atlas
12
activation
10
liver
10
liver disease
8
stellate cells
8
hscs
8

Similar Publications

Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.

View Article and Find Full Text PDF

Although herpes simplex virus, Epstein-Barr virus, and hemophagocytic lymphohistiocytosis are known causes of severe acute liver injury with or without liver failure, these diseases occur almost exclusively in immunocompromised and elderly patients. We report a case of an immunocompetent young man with no medical history who presented with a subacute cough and persistent fevers in the setting of a penile chancre. He was found to have severely elevated liver chemistries and was subsequently diagnosed with hemophagocytic lymphohistiocytosis because of disseminated herpes simplex virus type 1 and Epstein-Barr virus coinfection.

View Article and Find Full Text PDF

Purpose: Sepsis-associated liver injury (SALI) leads to increased mortality in sepsis patients, yet no specialized tools exist for early risk assessment. This study aimed to develop and validate a risk prediction model for early identification of SALI before patients meet full diagnostic criteria.

Patients And Methods: This retrospective study analyzed 415 sepsis patients admitted to ICU from January 2019 to January 2022.

View Article and Find Full Text PDF

This study introduced a hydrogel dressing, termed SODex-gel, which was constructed by establishing Schiff base and hydrogen bonds with the precursors of oxidized dextran (ODex) and succinic dihydrazide (SD)-modified sodium alginate (SD--SA). Through comprehensive and studies, the adhesive properties, self-healing capabilities, hemostatic potential, and wound healing efficacy of the SODex-gel dressing were meticulously evaluated. The H NMR, FTIR, and TGA analyses confirmed the fabrication of the SODex-gel dressing and its constituent elements.

View Article and Find Full Text PDF

Background: Therapeutic options for managing intestinal and hepatic inflammation associated with alcohol consumption, a prevalent health problem worldwide, remain unavailable. This study examines the potential efficacy of polyethylene glycol (PEG) in mitigating the intestinal and hepatic damage, employing a mouse model for assessment.

Methods: First, the mixture of ethanol (4 g/kg body weight) and PEG (2 g/kg body weight) or an equivalent volume of vehicle was administered orally alcohol consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!