Cellulases are of paramount interest for upcoming biorefineries that utilize residue from agriculture and forestry to produce sustainable fuels and chemicals. Specifically, cellulases are used for the conversion of recalcitrant plant biomass to fermentable sugars in a so-called saccharification process. The vast literature on enzymatic saccharification frequently refers to low catalytic rates of cellulases as a main bottleneck for industrial implementation, but such statements are rarely supported by kinetic or thermodynamic considerations. In this perspective, we first discuss activation barriers and equilibrium conditions for the hydrolysis of cellulose and how these parameters influence enzymatic turnover. Next, we propose a simple framework for kinetic description of cellulolytic enzyme reactions and show how this can pave the way for comparative biochemical analyses of cellulases acting on their native, insoluble substrate. This latter analysis emphasizes that cellulases are characterized by extraordinarily low off-rate constants, while other kinetic parameters including specificity constants and rate constants for association and bond cleavage are quite like parameters reported for related enzymes acting on soluble substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699605PMC
http://dx.doi.org/10.1016/j.bbadva.2024.100128DOI Listing

Publication Analysis

Top Keywords

kinetic thermodynamic
8
cellulases
6
cellulases slow?
4
kinetic
4
slow? kinetic
4
thermodynamic limitations
4
limitations enzymatic
4
enzymatic breakdown
4
breakdown cellulose
4
cellulose cellulases
4

Similar Publications

This study focuses on enhancing the water oxidation reaction (WOR) efficacy of dinuclear cobalt complex catalysts from both kinetic (turnover frequency, TOF) and thermodynamic (overpotential, η) perspectives. For this purpose, we synthesized six dinuclear cobalt complexes 1-6 comprising non-innocent ligands with different electronically active substituents (-OMe (1), -Me (2), -H (3), -F (4), -Cl (5), and -CN (6)). The electronic effects on the electrochemical WOR under neutral, acidic, and alkaline conditions were investigated experimentally and computationally.

View Article and Find Full Text PDF

KHSRP (KH-type splicing regulatory protein) is a multifunctional nucleic acid-binding protein that regulates various cellular processes, with critical roles in controlling gene expression. G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in essential cellular activities, including gene expression, and are recognized as potential therapeutic targets in cancer. The biological functions of G4s are mediated by proteins making their formation highly dynamic within cells.

View Article and Find Full Text PDF

The oxidation of Met residues in proteins is a complex process, where protein-specific structural and dynamical features play a relevant role in determining the reaction kinetics. Aiming to a full-side perspective, we report here a comprehensive characterization of Met oxidation kinetics by hydrogen peroxide in a leptin protein case study. To do that, we estimated the reaction-free energy profile of the Met oxidation via a QM/MM approach, while the kinetics of the formation of the reactive species were calculated using classical molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

Oxidative Polymerization in Water Treatment: Chemical Fundamentals and Future Perspectives.

Environ Sci Technol

January 2025

Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China.

For several decades, the methodology of complete destruction of organic pollutants via oxidation, i.e., mineralization, has been rooted in real water treatment applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!