A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antibacterial properties of copper-tantalum thin films: The impact of copper content and thermal treatment on implant coatings. | LitMetric

AI Article Synopsis

  • The study explores the antibacterial effects of tantalum-copper (Ta-Cu) coatings on titanium alloys to combat infections from orthopedic and dental implants.
  • The coatings were created with different copper percentages and subjected to various thermal treatments, with the TaCu-2 sample (∼10 wt% copper, annealed at 600 °C) showing the best antibacterial performance.
  • Optimizing the copper content and annealing temperature was found to be crucial in improving the antibacterial properties of these coatings, suggesting their potential for reducing implant-related infections.

Article Abstract

This study evaluates the antibacterial properties and physicochemical characteristics of -tantalum-copper (Ta-Cu) coatings deposited on titanium alloy substrates using high-power magnetron sputtering. Implant-associated infections, particularly those caused by bacterial adhesion and biofilm formation, pose significant challenges in the field of orthopedic and dental implants. To address these issues, Ta-Cu coatings with varying copper content (∼3.0 wt%, ∼10 wt%, ∼17 wt% for TaCu-1, TaCu-2, and TaCu-3, respectively) and different thermal treatment conditions (400 °C, 500 °C, 600 °C) were assessed for their antibacterial efficacy against and . The study utilized both the diffusion into agar method and the time-kill test to evaluate antibacterial activity. Results indicate that the TaCu-2 sample, particularly when annealed at 600 °C, demonstrated the highest bactericidal activity, especially against and . The findings highlight the critical role of optimizing both copper content and annealing temperature in enhancing the antibacterial properties of Cu-Ta coatings, making them promising candidates for preventing implant-associated infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699384PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e41130DOI Listing

Publication Analysis

Top Keywords

antibacterial properties
12
copper content
12
thermal treatment
8
ta-cu coatings
8
implant-associated infections
8
antibacterial
5
properties copper-tantalum
4
copper-tantalum thin
4
thin films
4
films impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!