A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning to Predict the Future Growth of Geographic Atrophy from Fundus Autofluorescence. | LitMetric

Purpose: The region of growth (ROG) of geographic atrophy (GA) throughout the macular area has an impact on visual outcomes. Here, we developed multiple deep learning models to predict the 1-year ROG of GA lesions using fundus autofluorescence (FAF) images.

Design: In this retrospective analysis, 3 types of models were developed using FAF images collected 6 months after baseline to predict the GA lesion area (segmented lesion mask) at 1.5 years, FAF images collected at baseline and 6 months to predict the GA lesion at 1.5 years, and FAF images collected 6 months after baseline to predict the GA lesion at 1 and 1.5 years. The 1-year ROG from the 6-month visit was derived by taking the difference between the GA lesion area (segmented lesion mask) at the 1.5-year and 6-month visits.

Participants: Patients enrolled in the following lampalizumab clinical trials and prospective observational studies: NCT02247479, NCT02247531, NCT02479386, and NCT02399072.

Methods: Datasets of study eyes from 597 patients were split into model training (310), validation (78), and test sets (209), stratified by baseline or initial lesion area, lesion growth rate, foveal involvement, and focality. Deep learning experiments were performed using the 2-dimensional U-Net; whole-lesion and multiclass models were developed.

Main Outcome Measures: The performance of the models was evaluated by calculating the Dice score, coefficient of determination (R), and the squared Pearson correlation coefficient (r) between the true and derived GA lesion 1-year ROG.

Results: The model using baseline and 6-month FAF images to predict GA lesion enlargement at 1.5 years had the best performance for the derived 1-year ROG. Mean Dice scores were 0.73, 0.68, and 0.70 in the training, validation, and test sets, respectively. The R (0.77, 0.53, and 0.79) and r (0.83, 0.61, and 0.79) showed similar trends across the 3 sets.

Conclusions: These findings show the potential of using baseline and/or 6-month visit FAF images to predict 1-year GA ROG using a deep learning approach. This work could potentially help support decision-making in clinical trials and more informed treatment decisions in clinical practice.

Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699103PMC
http://dx.doi.org/10.1016/j.xops.2024.100635DOI Listing

Publication Analysis

Top Keywords

faf images
20
deep learning
16
1-year rog
16
predict lesion
16
images collected
12
lesion area
12
lesion
10
geographic atrophy
8
fundus autofluorescence
8
predict 1-year
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!