Although various mechanisms of carbapenem-resistance have been identified in the nosocomial pathogen , the critical process of resistance evolution and the factors involved in are not well understood. Herein, we identified a universal stress protein Usp1413 which played an important role in adaptive resistance of to meropenem (MEM). Based on RNA-Seq and genome sequencing, Usp1413 was not only one of the most downregulated USPs, but also the bare one having mutation of tyrosine and glycine inserted at the site of 229-230 (YG229-230) under the stimulation of MEM. Deletion of Usp1413 resulted in increased MEM resistance. In addition, Usp1413 affected the bacterial abilities of biofilm formation and swarm motility, as well as helped response to various environmental stresses. These effects of Usp1413 were achieved by regulating its interaction proteins, within the functions of YigZ family protein, acetyltransferase, and SulP family inorganic anion transporter. The insertion mutation of YG229-230 influenced both the expression of interaction proteins and the phenotypes of bacteria. Finally, the promotor region of Usp1413 was convinced by point mutations. Overall, our findings identified the universal stress protein Usp1413 as a contributor involved in MEM adaptive resistance and responded to numerous environmental stresses. This study provides novel insights into the mechanism of universal stress proteins in participating antibiotic resistance, and affords a potential target for controlling drug resistance development in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699434PMC
http://dx.doi.org/10.1016/j.crmicr.2024.100332DOI Listing

Publication Analysis

Top Keywords

universal stress
16
stress protein
12
protein usp1413
12
adaptive resistance
12
usp1413
8
identified universal
8
environmental stresses
8
interaction proteins
8
resistance
7
stress
5

Similar Publications

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Properties of New Partially Crystallized Lithium Disilicate CAD-CAM Materials.

Oper Dent

January 2025

*Kraig S. Vandewalle, DDS, MS, Col (ret), USAF, DC, Air Force Consultant in Dental Research Advanced Education in General Dentistry Residency, AF Postgraduate Dental School, Joint Base San Antonio - Lackland, TX, USA; Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

Objective: The purpose of this study was to compare the optical, mechanical, and biological properties of two new, inexpensive lithium disilicate (LS2) materials (Lodden (LOD), LD Medical Technology; and BeautyZir (BZ), BeautyZir Technology) to a clinically established LS2 material (IPS e.max CAD (EMAX), Ivoclar Vivadent).

Methods And Materials: The optical properties of the translucency parameter (TP) and opalescence parameter (OP) were obtained with a dental spectrophotometer.

View Article and Find Full Text PDF

Although various mechanisms of carbapenem-resistance have been identified in the nosocomial pathogen , the critical process of resistance evolution and the factors involved in are not well understood. Herein, we identified a universal stress protein Usp1413 which played an important role in adaptive resistance of to meropenem (MEM). Based on RNA-Seq and genome sequencing, Usp1413 was not only one of the most downregulated USPs, but also the bare one having mutation of tyrosine and glycine inserted at the site of 229-230 (YG229-230) under the stimulation of MEM.

View Article and Find Full Text PDF

Pathogen stress heightens sensorimotor dimensions in the human collective semantic space.

Commun Psychol

January 2025

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.

Infectious diseases have been major causes of death throughout human history and are assumed to broadly affect human psychology. However, whether and how conceptual processing, an internal world model central to various cognitive processes, adapts to such salient stress variables remains largely unknown. To address this, we conducted three studies examining the relationship between pathogen severity and semantic space, probed through the main neurocognitive semantic dimensions revealed by large-scale text analyses: one cross-cultural study (across 43 countries) and two historical studies (over the past 100 years).

View Article and Find Full Text PDF

Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!