Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end-to-end Atlantis ecosystem model to compare and contrast the effects of climate-driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem. Adopting a scenario analysis approach, we used Atlantis to measure differences in the biomass, abundance, and weight at age of pelagic and demersal species among six simulations for the years 2013-2100 and tracked the implications of those changes for spatially defined California Current fishing fleets. The simulations varied in their use of forced climate-driven species distribution shifts, time-varying projections of ocean warming, or both. In general, the abundance and biomass of coastal pelagic species like Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) were more sensitive to projected climate change, while demersal groups like Dover sole (Microstomus pacificus) experienced smaller changes due to counteracting effects of spatial distribution change and metabolic effects of warming. Climate-driven species distribution shifts and the resulting changes in food web interactions were more influential than warming on end-of-century biomass and abundance patterns. Spatial projections of changes in fisheries catch did not always align with changes in abundance of their targeted species. This mismatch is likely due to species distribution shifts into or out of fishing areas and emphasizes the importance of a spatially explicit understanding of both climate change effects and fishing dynamics. We illuminate important biological and ecological pathways through which climate change acts in an ecosystem context and end with a discussion of potential management implications and future directions for climate change research using ecosystem models.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.70021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701712PMC

Publication Analysis

Top Keywords

climate change
28
species distribution
16
distribution shifts
16
california current
12
climate-driven species
12
species
9
climate
8
current ecosystem
8
ecosystem model
8
biological ecological
8

Similar Publications

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba.

Mol Ecol

January 2025

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.

View Article and Find Full Text PDF

Tropical Indian Ocean drives Hadley circulation change in a warming climate.

Natl Sci Rev

January 2025

Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.

The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.

View Article and Find Full Text PDF

Scientometric approach to the scientific trends in articles on seagrass in the Atlantic Coast published between 1969-2024.

Front Plant Sci

December 2024

Laboratório de Ecologia de Sedimentos, Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil.

Submerged or partially floating seagrasses in marine or brackish waters form productive seagrass beds, feeding grounds for a rich and varied associated biota, play key ecological roles in mitigating climate change and provide ecosystem services for humanity. The objective of this study was to perform a temporal quali- and quantitative analysis on the scientific production on seagrasses in the Atlantic Ocean during last 64 years (1960 to 2024) through defined workflow by scientometric analysis on Scopus database. Publications in this database date back to 1969, comprising a total of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!