AI Article Synopsis

  • Cancer is a major global health issue, and extracellular vesicles (EVs), particularly exosomes, are important for early cancer detection and monitoring since they contain valuable information from tumor cells.
  • Exosomes released by tumor cells contribute to processes like tumor growth, spread, and resistance to treatment, and they are produced in greater quantities than those from normal cells.
  • The findings of this review underline the potential of exosomal components as diagnostic and prognostic tools, potentially enhancing cancer management and patient care.

Article Abstract

Background: Cancer is the second leading cause of human mortality worldwide. Extracellular vesicles (EVs) from liquid biopsy samples are used in early cancer detection, characterization, and surveillance. Exosomes are a subset of EVs produced by all cells and present in all body fluids. They play an important role in the development of cancer because they are active transporters capable of carrying the contents of any type of cell. The objective of this review was to provide a brief overview of the clinical implication of exosomes or exosomal components in cancer diagnosis and prognosis.

Methods: An extensive review of the current literature of exosomes and their components in cancer diagnosis and prognosis were carried out in the current study.

Results: Tumor cells release exosomes that contribute to the formation of the pre-metastatic microenvironment, angiogenesis, invasion, and treatment resistance. On the contrary, tumor cells release more exosomes than normal cells, and these tumor-specific exosomes can carry the genomic and proteomic signature contents of the tumor cells, which can act as tools for the diagnosis and prognosis of patients with cancers.

Conclusion: This information may help clinicians to improve the management of cancer patients in clinical settings in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cam4.70569DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702466PMC

Publication Analysis

Top Keywords

tumor cells
12
exosomes components
8
components cancer
8
cancer diagnosis
8
diagnosis prognosis
8
cells release
8
release exosomes
8
exosomes
7
cancer
6
cells
5

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Focus on mechano-immunology: new direction in cancer treatment.

Int J Surg

January 2025

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

The immune response is modulated by a diverse array of signals within the tissue microenvironment, encompassing biochemical factors, mechanical forces, and pressures from adjacent tissues. Furthermore, the extracellular matrix and its constituents significantly influence the function of immune cells. In the case of carcinogenesis, changes in the biophysical properties of tissues can impact the mechanical signals received by immune cells, and these signals can be translated into biochemical signals through mechano-transduction pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!