[Roles of ferroptosis in the development of diabetic nephropathy].

Zhejiang Da Xue Xue Bao Yi Xue Ban

Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.

Published: December 2024

AI Article Synopsis

  • Diabetic nephropathy is a serious complication of diabetes that can lead to death, and ferroptosis (an iron-dependent cell death process) plays a role in its progression.
  • AMPK signaling can slow down diabetic nephropathy but excessive activation may cause autophagic death, while Nrf2 and HO-1 pathways can protect against ferroptosis; however, these pathways have complex effects.
  • Other factors like TGF-β1 and specific exosome-related signals also contribute to the development of diabetic nephropathy, suggesting potential new therapeutic targets to prevent or treat this condition.

Article Abstract

Diabetic nephropathy is a common microvascular complication of diabetes mellitus and one of the main causes of death in patients with diabetes mellitus. Ferroptosis is a newly discovered iron-dependent regulated cell death, which may contribute to the pathogenesis and development of diabetic nephropathy. Adenosine monophosphate-activated protein kinase (AMPK)-mediated ferroptosis-related signaling pathways can slow down the progression of diabetic nephropathy, but excessive activation of AMPK signaling pathway may induce cells to undergo autophagic death. Activation of the signaling pathway mediated by nuclear factor-erythroid 2-related factor (Nrf) 2 and heme oxygenase (HO)-1 can inhibit ferroptosis of cells and alleviate diabetic nephropathy. However, the regulatory effect of HO-1 on ferroptosis is bidirectional, and activation of HIF-1α/HO-1 pathway may lead to intracellular iron overload and ultimately promote ferroptosis. Transforming growth factor (TGF)-β1 mediated signaling pathways can accelerate lipid peroxidation by down-regulating the levels of SLC7A11/GSH/GPX4. The ferroptosis-related signaling pathways mediated by exosome lncRNAs/circRNAs/miRNAs are also involved in the pathogenesis and development of diabetic nephropathy. In addition, signaling pathways mediated by stimulator of interferon gene (STING) and the novel ferroptosis promoter acyl-CoA synthetase long-chain family (ACSL) 1 can induce ferroptosis to promote the progression of diabetic nephropathy. In this review, we focus on the roles of ferroptosis in diabetic nephropathy through the signaling pathways mediated by AMPK, Nrf2/HO-1, TGF-β and exosomes, to elaborate the pathogenesis and development of diabetic nephropathy, and the potential therapeutic target for diabetic nephropathy.

Download full-text PDF

Source
http://dx.doi.org/10.3724/zdxbyxb-2024-0114DOI Listing

Publication Analysis

Top Keywords

diabetic nephropathy
36
signaling pathways
20
development diabetic
16
pathogenesis development
12
pathways mediated
12
diabetic
10
nephropathy
9
diabetes mellitus
8
ferroptosis-related signaling
8
progression diabetic
8

Similar Publications

Gender-related diabetic nephropathy: Yes or no.

J Res Med Sci

November 2024

Water and Electrolytes Research Center, and Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is the single largest cause of end-stage renal disease (ESRD). Inflammation reaction mediated by NLRP3 inflammasome and Nrf2-related oxidative stress have been considered to play a very important role in the progress of diabetic nephropathy (DN). Effective drugs for the treatment of diabetic nephropathy still need to be explored.

View Article and Find Full Text PDF

Background Type 2 diabetes mellitus (T2DM) is associated with a high risk of developing microvascular complications such as diabetic nephropathy, diabetic neuropathy (DN), and diabetic retinopathy (DR), leading to significant morbidity. Early detection of these complications is crucial for improving patient outcomes. Neutrophil-lymphocyte ratio (NLR) and urine albumin-creatinine ratio (UACR) show promise as cost-effective and accessible biomarkers for the early detection of microvascular complications in T2DM.

View Article and Find Full Text PDF

Long noncoding RNAs may function as competitive endogenous RNAs by sponging microRNAs, thereby contributing to the progression of diabetic nephropathy. In this study, a potential diabetic nephropathy-related long noncoding-microRNA-mRNA axis, Gm4419-miR-455-3p-, was predicted using bioinformatics methods. To verify the role of the Gm4419-miR-455-3p- axis in diabetic nephropathy, an high glucose-induced mesangial cell model was established.

View Article and Find Full Text PDF

A comprehensive examination and analysis of the effectiveness and safety of finerenone for the treatment of diabetic kidney disease: a systematic review and meta-analysis.

Front Endocrinol (Lausanne)

January 2025

Department of Nephrology, Affiliated Bao'an Hospital of Shenzhen, The Second School of Clinical Medicine, Southern Medical University, Shenzhen, China.

Objectives: The study will evaluate the effectiveness and safety of finerenone in patients diagnosed with diabetic kidney disease (DKD).

Methods: Various databases including PubMed, Sinomed, Web of Science, Embase, Clinical Trials, and Cochrane Library were systematically reviewed for pertinent studies published from the beginning to February 2024.This meta-analysis utilized RevMan 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!