Gene expression biomarkers have the potential to identify genotoxic and non-genotoxic carcinogens, providing opportunities for integrated testing and reducing animal use. In August 2022, an International Workshops on Genotoxicity Testing (IWGT) workshop was held to critically review current methods to identify genotoxicants using transcriptomic profiling. Here, we summarize the findings of the workgroup on the state of the science regarding the use of transcriptomic biomarkers to identify genotoxic chemicals in vitro and in vivo. A total of 1341 papers were examined to identify the biomarkers that show the most promise for identifying genotoxicants. This analysis revealed two independently derived in vivo biomarkers and three in vitro biomarkers that, when used in conjunction with standard computational techniques, can identify genotoxic chemicals in vivo (rat or mouse liver) or in human cells in culture using different gene expression profiling platforms, with predictive accuracies of ≥92%. These biomarkers have been validated to differing degrees but typically show high reproducibility across transcriptomic platforms and model systems. They offer several advantages for applications in different contexts of use in genotoxicity testing including: early signal detection, moderate-to-high-throughput screening capacity, adaptability to different cell types and tissues, and insights on mechanistic information on DNA-damage response. Workshop participants agreed on consensus statements to advance the regulatory adoption of transcriptomic biomarkers for genotoxicity. The participants agreed that transcriptomic biomarkers have the potential to be used in conjunction with other biomarkers in integrated test strategies in vitro and using short-term rodent exposures to identify genotoxic and non-genotoxic chemicals that may cause cancer and heritable genetic effects. Following are the consensus statements from the workgroup. Transcriptomic biomarkers for genotoxicity can be used in Weight of Evidence (WoE) evaluation to: determine potential genotoxic mechanisms and hazards; identify misleading positives from in vitro genotoxicity assays; serve as new approach methodologies (NAMs) integrated into the standard battery of genotoxicity tests. Several transcriptomic biomarkers have been developed from sufficiently robust training data sets, validated with external test sets, and have demonstrated performance in multiple laboratories. These transcriptomic biomarkers can be used following established study designs and models designated through existing validation exercises in WoE evaluation. Bridging studies using a selection of training and test chemicals are needed to deviate from the established protocols to confirm performance when a transcriptomic biomarker is being applied in other: tissues, cell models, or gene expression platforms. Top dose selection and time of gene expression analysis are critical and should be established during transcriptomic biomarker development. These conditions are the only ones suited for transcriptomic biomarker use unless additional bridging or pharmacokinetic studies are conducted. Temporal effects for genotoxicants that operate via distinct mechanisms should be considered in data interpretation. Fixed transcriptomic biomarker gene sets and analytical processes do not need to be independently rederived in biomarker validation. Validation should focus on the performance of the gene set in external test sets. Robust external testing should ensure a minimum of additional chemicals spanning genotoxic and non-genotoxic modes of action. Genes in the transcriptomic biomarker do not need to be known to be mechanistically involved in genotoxicity responses. Existing frameworks described for NAMs could be applied for validation of transcriptomic biomarkers. Reproducibility of bioinformatic analysis is critical for the regulatory application of transcriptomic biomarkers. A bioinformatics expert should be involved with creating reproducible methods for the qualification and application of each transcriptomic biomarker.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/em.22645 | DOI Listing |
Cancer Rep (Hoboken)
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.
Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).
Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.
Front Immunol
January 2025
Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
Background: Post-stroke depression (PSD) is the most prevalent neuropsychiatric complication following a stroke. The inflammatory theory suggests that PSD may be associated with an overactive inflammatory response. However, research findings regarding inflammation-related indicators in PSD remain inconsistent and elusive.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
Background: Sepsis is an uncontrolled reaction to infection that causes severe organ dysfunction and is a primary cause of ARDS. Patients suffering both sepsis and ARDS have a poor prognosis and high mortality. However, the mechanisms behind their simultaneous occurrence are unclear.
View Article and Find Full Text PDFBackground: T cell mediated immunity is reported to play a pathogenic role in cardiac allograft vasculopathy (CAV) in heart transplant (HTx) patients. However, peripheral blood CD8 T cells have not been previously characterized in CAV. This study aimed to identify potentially pathogenic circulating CD8 T cell populations in high grade CAV patients using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq).
View Article and Find Full Text PDFJ Transl Med
January 2025
Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
Background: The activation of macrophages or microglia in patients' whole body or local eyes play significant roles in diabetic retinopathy (DR). Mitochondrial function regulates the inflammatory polarization of macrophages. Therefore, the common mechanism of mitochondrial related genes (MRGs) and macrophage polarisation related genes (MPRGs) in DR is explored in our study to illustrate the pathophysiology of DR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!