Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Pneumonia is an acute respiratory infection that has emerged as the predominant catalyst for escalating mortality rates worldwide. In the pursuit of the prevention and prediction of pneumonia, this work employs the development of an advanced deep-learning model by using a federated learning framework. The deep learning models rely on the utilization of a centralized system for disease prediction on the medical imaging data and pose risks of data breaches and exploitation; however, federated learning is a decentralized architecture which significantly reduces data privacy concerns.
Methods: The federated learning works in a distributed architecture by sending a global model to clients rather than sending the data to the model. The proposed federated deep learning-based FedPneu computer-aided diagnosis model has been implemented in 2, 3, 4, and 5 clients architecture for early pneumonia detection using X-ray images. The key parameters configuration include batch size, learning rate, optimizer, decay, momentum, epochs, rounds, and random-split as 32, 0.0001, SGD, 0.000001, 0.9, 10, 100, and 42, respectively.
Results: The results of the proposed federated deep learning-based FedPneu model have been provided in terms of round-wise accuracy, loss, and computational time. The highest accuracy of 85.632% has been achieved with 2-clients federated deep learning architecture, whereas, 3, 4, and 5 clients architecture achieved 85.536%, 76.112%, and 74.123% accuracies, respectively.
Conclusion: In the proposed privacy-protected federated deep learning-based FedPneu model, the two-client architecture has been resulted as the most optimal framework for pneumonia detection among 3-clients, 4-clients, and 5-clients architecture. The model works in a collaborative and privacyprotected framework with a multi-silo dataset which could be highly beneficial for healthcare departments to maintain patient's data privacy with improved prediction outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0115734056333970241212132150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!