A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a Novel Mitochondrial Dysfunction-Related Alzheimer's Disease Diagnostic Model Using Bioinformatics and Machine Learning. | LitMetric

Unlabelled:

Introduction: Alzheimer's disease (AD) represents the most common neurodegenerative disorder, characterized by progressive cognitive decline and memory loss. Despite the recognition of mitochondrial dysfunction as a critical factor in the pathogenesis of AD, the specific molecular mechanisms remain largely undefined.

Method: This study aimed to identify novel biomarkers and therapeutic strategies associated with mitochondrial dysfunction in AD by employing bioinformatics combined with machine learning methodologies. We performed Weighted Gene Co-expression Network Analysis (WGCNA) utilizing gene expression data from the NCBI Gene Expression Omnibus (GEO) database and isolated mitochondria-related genes through the MitoCarta3.0 database. By intersecting WGCNA-derived module genes with identified mitochondrial genes, we compiled a list of 60 mitochondrial dysfunction- related genes (MRGs) significantly enriched in pathways pertinent to mitochondrial function, such as the citrate cycle and oxidative phosphorylation.

Results: Employing machine learning techniques, including random forest and LASSO, along with the CytoHubba algorithm, we identified key genes with strong diagnostic potential, such as ACO2, CS, MRPS27, SDHA, SLC25A20, and SYNJ2BP, verified through ROC analysis. Furthermore, an interaction network involving miRNA-MRGs-transcription factors and a protein-drug interaction network revealed potential therapeutic compounds such as Congo red and kynurenic acid that target MRGs.

Conclusion: These findings delineate the intricate role of mitochondrial dysfunction in AD and highlight promising avenues for further exploration of biomarkers and therapeutic interventions in this devastating disease.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115672050353736241218054012DOI Listing

Publication Analysis

Top Keywords

machine learning
12
mitochondrial dysfunction
12
alzheimer's disease
8
biomarkers therapeutic
8
gene expression
8
interaction network
8
mitochondrial
7
genes
5
development novel
4
novel mitochondrial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!