A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing the Performance of Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells through Polyaniline-Mediated Iodine Recycling and Defect Passivation. | LitMetric

Enhancing the Performance of Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells through Polyaniline-Mediated Iodine Recycling and Defect Passivation.

Small

Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.

Published: January 2025

Printable mesoscopic perovskite solar cells (p-MPSCs) provide an opportunity for low-cost manufacturing of photovoltaics. However, the performance of p-MPSCs is severely compromised by iodine defects. This study presents a strategy by incorporating polyaniline (PANI) to achieve both iodine recycling and iodine defect passivation to significantly improve the performance of p-MPSCs. PANI captures and immobilizes iodine ions, establishing a stable iodine recycling system that effectively suppresses iodine loss. Additionally, the Lewis base properties of PANI enable it to passivate iodine defects within the perovskite and suppress nonradiative recombination. With the synergistic effects, PANI increases the power conversion efficiency of the champion device from 18.28% to 20.24%. This strategy offers a potential solution for enhancing the performance of p-MPSCs with promising implications for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202411247DOI Listing

Publication Analysis

Top Keywords

iodine recycling
12
performance p-mpscs
12
enhancing performance
8
printable mesoscopic
8
mesoscopic perovskite
8
perovskite solar
8
solar cells
8
iodine
8
defect passivation
8
iodine defects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!