An adjustable and scalable method for the continuous flow synthesis of cupric oxide nanoparticles (CuO NPs), targetted the reduction of their activity to synthetic biomembranes to inform the fabrication of nanoparticles (NPs) with reduced toxicity for commercial applications. By manipulating key factors; temperature, residence time, and the ratio of precursor to reductant, precise control over the morphology of CuO NPs is achieved with X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirming the formation of needle-shaped CuO NPs. One-variable-at-a-time studies reveal a relationship between the synthesis conditions and the characteristics of the resultant NPs, with CuO NPs varying controllably between 10-50 nanometres in length and 4-10 nanometres in width. Subsequently, Design of Experiment (DoE) exploration of the biomembrane activity of the CuO NPs intriguingly revealed only minimal effects on their membrane-disruptive properties in the chemical space defined by the synthesis conditions explored. This study marks a significant milestone, as it introduces a facile, easy to scale, continuous flow synthesis of CuO NPs, with control over the length and width of the needle NPs and reveals that, regardless of the exact shape, the NPs have minimal impact on biomembranes, prompting more detailed exploration in the future for use in biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202403529DOI Listing

Publication Analysis

Top Keywords

cuo nps
24
continuous flow
12
flow synthesis
12
nps
10
oxide nanoparticles
8
synthesis conditions
8
cuo
6
synthesis
5
synthesis copper
4
copper oxide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!